机器学习,神经网络中,自注意力跟卷积神经网络之间有什么样的差异或者关联?

如图 6.38a 所示,如果用自注意力来处理一张图像,假设红色框内的"1"是要考虑的像素,它会产生查询,其他像素产生

图 6.37 使用自注意力处理图像

。在做内积的时候,考虑的不是一个小的范围,而是整张图像的信息。如图 6.38b 所示,在

做卷积神经网络的时候,卷积神经网络会"画"出一个++感受野(receptive field)++ ,每一个滤波

器(filter),每一个神经元,只考虑感受野范围里面的信息。所以如果我们比较卷积神经网络

跟自注意力会发现,卷积神经网络可以看作是一种简化版的自注意力 ,因为在做卷积神经网
络的时候,只考虑感受野里面的信息。而在做自注意力的时候,会考虑整张图像的信息。在卷

积神经网络里面,我们要划定感受野。每一个神经元只考虑感受野里面的信息,而感受野的

大小是人决定的。而用自注意力去找出相关的像素,就好像是感受野是自动被学出来的,网
络自己决定感受野的形状
。网络决定说以这个像素为中心,哪些像素是真正需要考虑的,哪

些像素是相关的,所以感受野的范围不再是人工划定,而是让机器自己学出来。关于自注意

力跟卷积神经网络的关系,读者可以读论文 "On the Relationship between Self-attention and

Convolutional Layers",这篇论文里面会用数学的方式严谨地告诉我们,卷积神经网络就是自

注意力的特例。

图 6.38 自注意力和卷积神经网络的区别

自注意力只要设定合适的参数,就可以做到跟卷积神经网络一模一样的事情。卷积神经网络的函数集(function set)与自注意力的函数集的关系如图 6.39 所示。所以自注意力是更

灵活的卷积神经网络,而卷积神经网络是受限制的自注意力。自注意力只要通过某些设计、某

些限制就会变成卷积神经网络。

图 6.39 卷积神经网络的函数集与自注意力的函数集的关系

既然卷积神经网络是自注意力的一个子集,说明自注意力更灵活。++更灵活的模型需要更
多的数据。++ 如果数据不够,就有可能过拟合。而比较有限制的模型,它适合在数据少的时候使

用,它可能比较不会过拟合。如果限制设的好,也会有不错的结果。谷歌的论文 "An Image

is Worth 16x16 Words: Transformers for Image Recognition at Scale" 把自注意力应用在图

像上面,把一张图像拆成 16 × 16 个图像块(patch),它把每一个图像块就想像成是一个字

(word)。因为一般自注意力比较常用在自然语言处理上面,所以我们可以想像每一个图像块

就是一个字。如图 6.40 所示,横轴是训练的图像的量,对谷歌来说用的所谓的数据量比较少,

也是我们没有办法用的数据量。这边有 1000 万张图,是数据量比较小的设置(setting),数

据量比较大的设置呢,有 3 亿张图像。在这个实验里面,自注意力是浅蓝色的这一条线,卷

积神经网络是深灰色的这条线。随着数据量越来越多,自注意力的结果越来越好。最终在数据

量最多的时候,自注意力可以超过卷积神经网络,但在数据量少的时候,卷积神经网络是可以

比自注意力得到更好的结果的。自注意力的弹性比较大,所以需要比较多的训练数据,训练

数据少的时候就会过拟合。而卷积神经网络的弹性比较小,在训练数据少的时候结果比较好。

但训练数据多的时候,它没有办法从更大量的训练数据得到好处。这就是自注意力跟卷积神

经网络的比较。

下一篇:自注意力与循环神经网络对比

来源:李宏毅深度学习教程笔记 LeeDL_Tutorial_v.1.1.1.pdf 132M Page131-133

https://github.com/datawhalechina/leedl-tutorial

相关推荐
信息快讯13 小时前
【光学神经网络与人工智能应用专题】
人工智能·深度学习·神经网络
月下倩影时1 天前
视觉学习——卷积与神经网络:从原理到应用(量大管饱)
人工智能·神经网络·学习
pen-ai1 天前
【高级机器学习】 10. 领域适应与迁移学习
人工智能·机器学习·迁移学习
CV实验室1 天前
AAAI 2026 Oral 之江实验室等提出MoEGCL:在6大基准数据集上刷新SOTA,聚类准确率最高提升超8%!
人工智能·机器学习·计算机视觉·数据挖掘·论文·聚类
机器觉醒时代1 天前
“干活”机器人“教练”登场:宇树机器人推出首款轮式机器人G1-D
人工智能·机器学习·机器人·人形机器人
m0_635129261 天前
身智能-一文详解视觉-语言-动作(VLA)大模型(3)
人工智能·机器学习
pen-ai1 天前
【高级机器学习】 12. 强化学习,Q-learning, DQN
人工智能·机器学习
shayudiandian1 天前
CNN详解:卷积神经网络是如何识别图像的?
人工智能·深度学习·cnn
码上地球1 天前
大数据成矿预测系列(九) | 数据的“自我画像”:自编码器如何实现非监督下的“特征学习”
人工智能·深度学习·机器学习·数学建模
北邮刘老师1 天前
智能家居,需要的是“主控智能体”而不是“主控节点”
人工智能·算法·机器学习·智能体·智能体互联网