对代码感兴趣 但不擅长数学怎么办——《机器学习图解》来救你

目前,该领域中将理论与实践相结合、通俗易懂的著作较少。机器学习是人工智能的一部分,很多初学者往往把机器学习和深度学习作为人工智能入门的突破口,非科班出身的人士更是如此。当前,国内纵向复合型人才和横向复合型人才奇缺;具有计算机背景的人才主要还是以传统人工智能研究为主,跨学科人才较少。非科班人员在将机器学习应用于自己的研究时,往往对理论理解不透彻,且编程能力不足。针对这一现象,译者长期与出版社合作,翻译了一些经典实用、符合实际需求的著作,借此帮助人工智能、机器学习等相关领域的人士(包括非专业人士)使用机器学习解决自己所在领域的问题。

《机器学习图解》就是这样的著作!本书作者拥有密歇根大学数学博士学位,曾担任Google和Apple工程师,是机器学习布道者。本书是他这些年的成果结晶。本书将理论与实践结合,以图的形式讲解机器学习经典算法。全书共13章。第1章、第2章、第4章主要对机器学习基本概念、机器学习类型、优化训练过程进行介绍。

这对初学者形成机器学习思维习惯非常有益。第3章和第5~12章对9类经典的机器学习算法进行了系统介绍,包含问题提出、原理解释、代码实现等方面。第13章列举了真实示例。本书提供了丰富的代码和视频资源。建议读者一边阅读本书,一边动手实践,调试源码,并根据自己的实际需要研究问题,阅读文献并改进源码,解决自己的问题。本书可作为本科高年级和研究生教材,面向对编码感兴趣但不擅长数学的读者(非专业人士)。同时可作为计算机科学学者、企业工程师的参考书。

购买链接:《机器学习图解》([加]路易斯·G.塞拉诺(Luis G.Serrano))【摘要 书评 试读】- 京东图书 (jd.com)https://item.jd.com/13768333.html

相关推荐
听风吹等浪起32 分钟前
分类算法-逻辑回归
人工智能·算法·机器学习
成都犀牛2 小时前
强化学习(5)多智能体强化学习
人工智能·机器学习·强化学习
legendary_bruce2 小时前
【22.2 增强决策树】
算法·决策树·机器学习
龙山云仓2 小时前
迈向生成式软件制造新纪元:行动纲领与集结号
大数据·人工智能·机器学习·区块链·制造
txwtech3 小时前
第5篇 如何计算两个坐标点距离--opencv图像中的两个点
人工智能·算法·机器学习
递归不收敛14 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
IT森林里的程序猿15 小时前
基于机器学习方法的网球比赛胜负趋势预测
python·机器学习·django
正牌强哥15 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
shelter -唯16 小时前
京东手机项目:手机受欢迎的影响因素分析
python·机器学习·智能手机
victory043119 小时前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类