对代码感兴趣 但不擅长数学怎么办——《机器学习图解》来救你

目前,该领域中将理论与实践相结合、通俗易懂的著作较少。机器学习是人工智能的一部分,很多初学者往往把机器学习和深度学习作为人工智能入门的突破口,非科班出身的人士更是如此。当前,国内纵向复合型人才和横向复合型人才奇缺;具有计算机背景的人才主要还是以传统人工智能研究为主,跨学科人才较少。非科班人员在将机器学习应用于自己的研究时,往往对理论理解不透彻,且编程能力不足。针对这一现象,译者长期与出版社合作,翻译了一些经典实用、符合实际需求的著作,借此帮助人工智能、机器学习等相关领域的人士(包括非专业人士)使用机器学习解决自己所在领域的问题。

《机器学习图解》就是这样的著作!本书作者拥有密歇根大学数学博士学位,曾担任Google和Apple工程师,是机器学习布道者。本书是他这些年的成果结晶。本书将理论与实践结合,以图的形式讲解机器学习经典算法。全书共13章。第1章、第2章、第4章主要对机器学习基本概念、机器学习类型、优化训练过程进行介绍。

这对初学者形成机器学习思维习惯非常有益。第3章和第5~12章对9类经典的机器学习算法进行了系统介绍,包含问题提出、原理解释、代码实现等方面。第13章列举了真实示例。本书提供了丰富的代码和视频资源。建议读者一边阅读本书,一边动手实践,调试源码,并根据自己的实际需要研究问题,阅读文献并改进源码,解决自己的问题。本书可作为本科高年级和研究生教材,面向对编码感兴趣但不擅长数学的读者(非专业人士)。同时可作为计算机科学学者、企业工程师的参考书。

购买链接:《机器学习图解》([加]路易斯·G.塞拉诺(Luis G.Serrano))【摘要 书评 试读】- 京东图书 (jd.com)https://item.jd.com/13768333.html

相关推荐
ROBOT玲玉23 分钟前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
GocNeverGiveUp32 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
浊酒南街1 小时前
决策树(理论知识1)
算法·决策树·机器学习
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条2 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客2 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon2 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
古希腊掌管学习的神2 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
IT猿手2 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
强哥之神3 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai