对代码感兴趣 但不擅长数学怎么办——《机器学习图解》来救你

目前,该领域中将理论与实践相结合、通俗易懂的著作较少。机器学习是人工智能的一部分,很多初学者往往把机器学习和深度学习作为人工智能入门的突破口,非科班出身的人士更是如此。当前,国内纵向复合型人才和横向复合型人才奇缺;具有计算机背景的人才主要还是以传统人工智能研究为主,跨学科人才较少。非科班人员在将机器学习应用于自己的研究时,往往对理论理解不透彻,且编程能力不足。针对这一现象,译者长期与出版社合作,翻译了一些经典实用、符合实际需求的著作,借此帮助人工智能、机器学习等相关领域的人士(包括非专业人士)使用机器学习解决自己所在领域的问题。

《机器学习图解》就是这样的著作!本书作者拥有密歇根大学数学博士学位,曾担任Google和Apple工程师,是机器学习布道者。本书是他这些年的成果结晶。本书将理论与实践结合,以图的形式讲解机器学习经典算法。全书共13章。第1章、第2章、第4章主要对机器学习基本概念、机器学习类型、优化训练过程进行介绍。

这对初学者形成机器学习思维习惯非常有益。第3章和第5~12章对9类经典的机器学习算法进行了系统介绍,包含问题提出、原理解释、代码实现等方面。第13章列举了真实示例。本书提供了丰富的代码和视频资源。建议读者一边阅读本书,一边动手实践,调试源码,并根据自己的实际需要研究问题,阅读文献并改进源码,解决自己的问题。本书可作为本科高年级和研究生教材,面向对编码感兴趣但不擅长数学的读者(非专业人士)。同时可作为计算机科学学者、企业工程师的参考书。

购买链接:《机器学习图解》([加]路易斯·G.塞拉诺(Luis G.Serrano))【摘要 书评 试读】- 京东图书 (jd.com)https://item.jd.com/13768333.html

相关推荐
OpenBayes2 分钟前
教程上新丨Deepseek-OCR 以极少视觉 token 数在端到端模型中实现 SOTA
人工智能·深度学习·机器学习·ocr·大语言模型·文本处理·deepseek
fie88894 小时前
基于MATLAB实现的Elman神经网络用于电力负载预测
神经网络·机器学习·matlab
逻极12 小时前
Scikit-learn 实战:15 分钟构建生产级中国房价预测模型
python·机器学习·scikit-learn
Macbethad13 小时前
基于世界模型的自动驾驶控制算法
人工智能·机器学习·自动驾驶
Master_oid14 小时前
机器学习21:可解释机器学习(Explainable Machine Learning)(上)
人工智能·机器学习
大千AI助手17 小时前
敏感性分析(Sensitivity Analysis)在机器学习中的应用详解
人工智能·机器学习·敏感性分析·sa·大千ai助手·sensitivity·可解释ai
编程小白_正在努力中17 小时前
从入门到精通:周志华《机器学习》第一、二章深度解析
人工智能·机器学习
编码追梦人17 小时前
基于 ESP32 与机器学习的智能语音家居控制系统
人工智能·机器学习
koo36417 小时前
李宏毅机器学习笔记
人工智能·笔记·机器学习
nix.gnehc17 小时前
机器学习概念
人工智能·机器学习