LeetCode //C - 918. Maximum Sum Circular Subarray

918. Maximum Sum Circular Subarray

Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.

A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.

Example 1:

Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.

Example 2:

Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.

Example 3:

Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.

Constraints:
  • n == nums.length
  • 1 < = n < = 3 ∗ 1 0 4 1 <= n <= 3 * 10^4 1<=n<=3∗104
  • − 3 ∗ 1 0 4 < = n u m s [ i ] < = 3 ∗ 1 0 4 -3 * 10^4 <= nums[i] <= 3 * 10^4 −3∗104<=nums[i]<=3∗104

From: LeetCode

Link: 918. Maximum Sum Circular Subarray


Solution:

Ideas:

There are two possible scenarios for the maximum sum subarray in a circular array:

  1. The maximum sum subarray is similar to a regular array, i.e., it does not wrap around.
  2. The maximum sum subarray wraps around the end to the beginning of the array.

For the first scenario, we can use Kadane's algorithm directly. But for the second scenario, we need a different approach.

If the maximum sum subarray wraps around, then there's a continuous subarray at the opposite part of the array that has the minimum sum. Think of it as "taking away" the minimum sum part from the total to get the maximum circular sum.

Given this, we can use a similar approach to Kadane's algorithm to find both:

  1. The maximum subarray sum (for the first scenario).
  2. The minimum subarray sum (to help with the second scenario).
Code:
c 复制代码
int max(int a, int b) {
    return a > b ? a : b;
}

int min(int a, int b) {
    return a < b ? a : b;
}

int maxSubarraySumCircular(int* nums, int numsSize) {
    if (!nums || numsSize == 0) return 0;

    int total = 0, maxSum = -30000, curMax = 0, minSum = 30000, curMin = 0;

    for (int i = 0; i < numsSize; i++) {
        curMax = max(curMax + nums[i], nums[i]);
        maxSum = max(maxSum, curMax);
        
        curMin = min(curMin + nums[i], nums[i]);
        minSum = min(minSum, curMin);
        
        total += nums[i];
    }

    if (maxSum > 0) {
        return max(maxSum, total - minSum);
    } else {
        return maxSum;
    }
}
相关推荐
秋说1 小时前
【PTA数据结构 | C语言版】一元多项式求导
c语言·数据结构·算法
Maybyy2 小时前
力扣61.旋转链表
算法·leetcode·链表
暮鹤筠3 小时前
[C语言初阶]操作符
c语言·开发语言
卡卡卡卡罗特4 小时前
每日mysql
数据结构·算法
chao_7894 小时前
二分查找篇——搜索旋转排序数组【LeetCode】一次二分查找
数据结构·python·算法·leetcode·二分查找
lifallen5 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
lixzest5 小时前
C++ Lambda 表达式详解
服务器·开发语言·c++·算法
EndingCoder5 小时前
搜索算法在前端的实践
前端·算法·性能优化·状态模式·搜索算法
丶小鱼丶5 小时前
链表算法之【合并两个有序链表】
java·算法·链表
不吃洋葱.5 小时前
前缀和|差分
数据结构·算法