LeetCode //C - 918. Maximum Sum Circular Subarray

918. Maximum Sum Circular Subarray

Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums.

A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i] is nums[(i + 1) % n] and the previous element of nums[i] is nums[(i - 1 + n) % n].

A subarray may only include each element of the fixed buffer nums at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j], there does not exist i <= k1, k2 <= j with k1 % n == k2 % n.

Example 1:

Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.

Example 2:

Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.

Example 3:

Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.

Constraints:
  • n == nums.length
  • 1 < = n < = 3 ∗ 1 0 4 1 <= n <= 3 * 10^4 1<=n<=3∗104
  • − 3 ∗ 1 0 4 < = n u m s [ i ] < = 3 ∗ 1 0 4 -3 * 10^4 <= nums[i] <= 3 * 10^4 −3∗104<=nums[i]<=3∗104

From: LeetCode

Link: 918. Maximum Sum Circular Subarray


Solution:

Ideas:

There are two possible scenarios for the maximum sum subarray in a circular array:

  1. The maximum sum subarray is similar to a regular array, i.e., it does not wrap around.
  2. The maximum sum subarray wraps around the end to the beginning of the array.

For the first scenario, we can use Kadane's algorithm directly. But for the second scenario, we need a different approach.

If the maximum sum subarray wraps around, then there's a continuous subarray at the opposite part of the array that has the minimum sum. Think of it as "taking away" the minimum sum part from the total to get the maximum circular sum.

Given this, we can use a similar approach to Kadane's algorithm to find both:

  1. The maximum subarray sum (for the first scenario).
  2. The minimum subarray sum (to help with the second scenario).
Code:
c 复制代码
int max(int a, int b) {
    return a > b ? a : b;
}

int min(int a, int b) {
    return a < b ? a : b;
}

int maxSubarraySumCircular(int* nums, int numsSize) {
    if (!nums || numsSize == 0) return 0;

    int total = 0, maxSum = -30000, curMax = 0, minSum = 30000, curMin = 0;

    for (int i = 0; i < numsSize; i++) {
        curMax = max(curMax + nums[i], nums[i]);
        maxSum = max(maxSum, curMax);
        
        curMin = min(curMin + nums[i], nums[i]);
        minSum = min(minSum, curMin);
        
        total += nums[i];
    }

    if (maxSum > 0) {
        return max(maxSum, total - minSum);
    } else {
        return maxSum;
    }
}
相关推荐
杰克尼11 分钟前
1. 两数之和 (leetcode)
数据结构·算法·leetcode
YuTaoShao1 小时前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展
二进制person5 小时前
Java SE--方法的使用
java·开发语言·算法
OneQ6666 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way6 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
码农不惑6 小时前
2025.06.27-14.44 C语言开发:Onvif(二)
c语言·开发语言
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战8 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
BreezeJuvenile8 小时前
数据结构与算法分析课设:一元多项式求值
c语言·课程设计·数据结构与算法分析·一元多项式计算
weixin_478689768 小时前
十大排序算法汇总
java·算法·排序算法