决策树--ID3算法

决策树--ID3算法

概念

(1)信息熵

E n t r o p y ( x ) = − ∑ i N c l a s s P ( x i ) l o g 2 P ( x i ) Entropy(x) = -\sum_{i}^{N_{class}}P(x_i)log_2 P(x_i) Entropy(x)=−i∑NclassP(xi)log2P(xi)

假设只有2个类别(N=2), P(x_i) 在【 0 , 1 】之间, 在【0,1】之间, 在【0,1】之间,log_2 P(x_i) 小于0,因此Entropy(x) 大于0;

当两类别概率分别0.5,0.5的时候(样本均匀)信息熵最大,此时纯度最低;当分别为1,0的时候信息熵最小,此时纯度最高;

因此,信息熵表示不确定性(混乱程度),纯度最低的时候混乱性最大。

息增益指的就是划分可以带来纯度的提高,信息熵的下降。

(2)信息增益

决策树划分需要往数据纯度提高的方向进行才能正确识别样本,即信息熵变小的方向,假设划分前的信息熵为 S S S,根据特征 T T T划分后的信息熵为 S T S_{T} ST,则 S T S_{T} ST的值应该最小,即 S − S T S-S_{T} S−ST的值(信息增益)应该最大;

即信息增益最大的时候划分的数据越纯;

信息增益的计算公式为:
G a i n ( S , T ) = E n t r o p y ( S ) − ∑ v ∈ T ∣ S v ∣ ∣ S ∣ E n t r o p y ( ∣ S v ∣ ) Gain(S, T) = Entropy(S) -\sum_{v\in T }^{} \frac{|S_v|}{|S|} Entropy(|S_v|) Gain(S,T)=Entropy(S)−v∈T∑∣S∣∣Sv∣Entropy(∣Sv∣)

其中, v v v为特征 T T T的取值,当 v v v为特征 T 1 T_1 T1时,一共有样本数目为 ∣ S v ∣ |S_v| ∣Sv∣,该集合的信息熵为 E n t r o p y ( ∣ S v ∣ ) Entropy(|S_v|) Entropy(∣Sv∣)

相关推荐
Jerryhut1 天前
sklearn函数总结十 —— 决策树
人工智能·决策树·sklearn
Blossom.1181 天前
基于时序大模型+强化学习的虚拟电厂储能调度系统:从负荷预测到收益最大化的实战闭环
运维·人工智能·python·决策树·机器学习·自动化·音视频
最晚的py3 天前
ID3,C4.5,CART对比
决策树·机器学习
Blossom.1185 天前
基于MLOps+LLM的模型全生命周期自动化治理系统:从数据漂移到智能回滚的落地实践
运维·人工智能·学习·决策树·stable diffusion·自动化·音视频
Keep__Fighting9 天前
【机器学习:决策树】
人工智能·算法·决策树·机器学习·scikit-learn
Blossom.11810 天前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频
qq192263810 天前
玻璃盘CCD影像筛选机程序,应用5套CCD视觉系统,上位机工控电脑采用IO板转换通讯输出OK/...
决策树
千里码aicood12 天前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
Pluchon12 天前
硅基计划4.0 算法 记忆化搜索
java·数据结构·算法·leetcode·决策树·深度优先
玦尘、12 天前
《统计学习方法》第5章——决策树(下)【学习笔记】
决策树·机器学习·学习方法