决策树--ID3算法

决策树--ID3算法

概念

(1)信息熵

E n t r o p y ( x ) = − ∑ i N c l a s s P ( x i ) l o g 2 P ( x i ) Entropy(x) = -\sum_{i}^{N_{class}}P(x_i)log_2 P(x_i) Entropy(x)=−i∑NclassP(xi)log2P(xi)

假设只有2个类别(N=2), P(x_i) 在【 0 , 1 】之间, 在【0,1】之间, 在【0,1】之间,log_2 P(x_i) 小于0,因此Entropy(x) 大于0;

当两类别概率分别0.5,0.5的时候(样本均匀)信息熵最大,此时纯度最低;当分别为1,0的时候信息熵最小,此时纯度最高;

因此,信息熵表示不确定性(混乱程度),纯度最低的时候混乱性最大。

息增益指的就是划分可以带来纯度的提高,信息熵的下降。

(2)信息增益

决策树划分需要往数据纯度提高的方向进行才能正确识别样本,即信息熵变小的方向,假设划分前的信息熵为 S S S,根据特征 T T T划分后的信息熵为 S T S_{T} ST,则 S T S_{T} ST的值应该最小,即 S − S T S-S_{T} S−ST的值(信息增益)应该最大;

即信息增益最大的时候划分的数据越纯;

信息增益的计算公式为:
G a i n ( S , T ) = E n t r o p y ( S ) − ∑ v ∈ T ∣ S v ∣ ∣ S ∣ E n t r o p y ( ∣ S v ∣ ) Gain(S, T) = Entropy(S) -\sum_{v\in T }^{} \frac{|S_v|}{|S|} Entropy(|S_v|) Gain(S,T)=Entropy(S)−v∈T∑∣S∣∣Sv∣Entropy(∣Sv∣)

其中, v v v为特征 T T T的取值,当 v v v为特征 T 1 T_1 T1时,一共有样本数目为 ∣ S v ∣ |S_v| ∣Sv∣,该集合的信息熵为 E n t r o p y ( ∣ S v ∣ ) Entropy(|S_v|) Entropy(∣Sv∣)

相关推荐
edisao3 小时前
第三章 合规的自愿
jvm·数据仓库·python·神经网络·决策树·编辑器·动态规划
砚边数影20 小时前
模型持久化(一):Java 将训练好的模型序列化,存入 KingbaseES 二进制字段
java·开发语言·数据库·决策树·随机森林·金仓数据库
啊阿狸不会拉杆1 天前
《机器学习导论》第 14 章 -图方法
人工智能·python·算法·决策树·机器学习·图方法·信念传播
eWidget3 天前
随机森林实战:KingbaseES 多特征数据集 —— 模型性能对比决策树
java·数据库·算法·决策树·随机森林·金仓数据库
咩咩不吃草3 天前
决策树之回归树:核心知识点与实操指南
人工智能·python·算法·决策树·机器学习·回归
what丶k3 天前
深入浅出理解数据结构中的线性结构:分类、操作与优劣解析
数据结构·b树·算法·决策树·链表
不懒不懒3 天前
【深入浅出 Sklearn 决策树:分类与回归实战全解析】
决策树·分类·sklearn
啊阿狸不会拉杆4 天前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
szcsun54 天前
机器学习(五)--决策树
人工智能·决策树·机器学习
CHHYQMGDCDZu5 天前
工业互联网WMS系统源码。 前端基于Vue2.6,后端基于.NetCore3.1,前后端分离
决策树