38基于matlab的期货预测,利用PSO优化SVM和未优化的SVM进行对比,得到实际输出和期望输出结果。

基于matlab的期货预测,利用PSO优化SVM和未优化的SVM进行对比,得到实际输出和期望输出结果。线性核函数、多项式、RBF核函数三种核函数任意可选,并给出均方根误差,相对误差等结果,程序已调通,可直接运行。

38 PSO、优化SVM、线性核函数 (xiaohongshu.com)

相关推荐
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
其实吧310 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
Java Fans11 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
慕卿扬12 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
夏天里的肥宅水13 小时前
机器学习3_支持向量机_线性不可分——MOOC
人工智能·机器学习·支持向量机
Troc_wangpeng14 小时前
机器学习的转型
人工智能·机器学习
小言从不摸鱼14 小时前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
小码贾15 小时前
评估 机器学习 回归模型 的性能和准确度
人工智能·机器学习·回归·scikit-learn·性能评估
HyperAI超神经17 小时前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
Matlab程序猿小助手18 小时前
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
开发语言·嵌入式硬件·算法·matlab·机器人