63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

复制代码
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

复制代码
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01
cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        //dp[i][j]:到达(i,j)有dp[i][j]种方法
        //dp[i][j] = dp[i-1][j]+dp[i][j-1];
        //初始化:碰到障碍物,之后的都不能到达
        //遍历顺序:正序
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>>dp(m,vector<int>(n,0));
        //如果起点和终点是障碍物,不能到达
        if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) return 0;

        //初始化
        for(int i = 0;i < m;i++){
            if(obstacleGrid[i][0] != 1){
                dp[i][0] = 1;
            }
            else break;
        }

        for(int i = 0;i < n;i++){
            if(obstacleGrid[0][i] != 1){
                dp[0][i] = 1;
            }
            else break;
        }
        
        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                if(obstacleGrid[i][j] == 0){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};
相关推荐
燃于AC之乐3 小时前
我的算法修炼之路--4 ———我和算法的爱恨情仇
算法·前缀和·贪心算法·背包问题·洛谷
MM_MS8 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
独自破碎E8 小时前
【二分法】寻找峰值
算法
mit6.8249 小时前
位运算|拆分贪心
算法
ghie90909 小时前
基于MATLAB的TLBO算法优化实现与改进
开发语言·算法·matlab
恋爱绝缘体19 小时前
2020重学C++重构你的C++知识体系
java·开发语言·c++·算法·junit
wuk9989 小时前
VSC优化算法MATLAB实现
开发语言·算法·matlab
Z1Jxxx10 小时前
加密算法加密算法
开发语言·c++·算法
乌萨奇也要立志学C++10 小时前
【洛谷】递归初阶 三道经典递归算法题(汉诺塔 / 占卜 DIY/FBI 树)详解
数据结构·c++·算法
vyuvyucd10 小时前
C++引用:高效编程的别名利器
算法