63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

复制代码
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

复制代码
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01
cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        //dp[i][j]:到达(i,j)有dp[i][j]种方法
        //dp[i][j] = dp[i-1][j]+dp[i][j-1];
        //初始化:碰到障碍物,之后的都不能到达
        //遍历顺序:正序
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>>dp(m,vector<int>(n,0));
        //如果起点和终点是障碍物,不能到达
        if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) return 0;

        //初始化
        for(int i = 0;i < m;i++){
            if(obstacleGrid[i][0] != 1){
                dp[i][0] = 1;
            }
            else break;
        }

        for(int i = 0;i < n;i++){
            if(obstacleGrid[0][i] != 1){
                dp[0][i] = 1;
            }
            else break;
        }
        
        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                if(obstacleGrid[i][j] == 0){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};
相关推荐
Young_Zn_Cu1 小时前
LeetCode刷题记录(持续更新中)
算法·leetcode
天选之女wow1 小时前
【代码随想录算法训练营——Day31】贪心算法——56.合并区间、738.单调递增的数字、968.监控二叉树
算法·leetcode·贪心算法
lixinnnn.1 小时前
贪心:火烧赤壁
数据结构·c++·算法
小小前端_我自坚强1 小时前
前端算法相关详解
前端·算法
Predestination王瀞潞1 小时前
类的多态(Num020)
开发语言·c++
Predestination王瀞潞1 小时前
类的继承(Num019)
开发语言·c++
Nuyoah11klay1 小时前
华清远见25072班C++学习假期10.3作业
c++
前端 贾公子2 小时前
《Vuejs设计与实现》第 5 章(非原始值响应式方案)下 Set 和 Map 的响应式代理
数据结构·算法
Hard but lovely2 小时前
C++---》stl : pair 从使用到模拟实现
c++·后端
林中青木3 小时前
读写INI文件源码(点击关注)
c++·ini文件读取