63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

复制代码
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01
cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        //dp[i][j]:到达(i,j)有dp[i][j]种方法
        //dp[i][j] = dp[i-1][j]+dp[i][j-1];
        //初始化:碰到障碍物,之后的都不能到达
        //遍历顺序:正序
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>>dp(m,vector<int>(n,0));
        //如果起点和终点是障碍物,不能到达
        if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) return 0;

        //初始化
        for(int i = 0;i < m;i++){
            if(obstacleGrid[i][0] != 1){
                dp[i][0] = 1;
            }
            else break;
        }

        for(int i = 0;i < n;i++){
            if(obstacleGrid[0][i] != 1){
                dp[0][i] = 1;
            }
            else break;
        }
        
        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                if(obstacleGrid[i][j] == 0){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};
相关推荐
轩辰~3 分钟前
网络协议入门
linux·服务器·开发语言·网络·arm开发·c++·网络协议
lxyzcm23 分钟前
C++23新特性解析:[[assume]]属性
java·c++·spring boot·c++23
蜀黍@猿42 分钟前
C/C++基础错题归纳
c++
古希腊掌管学习的神44 分钟前
[搜广推]王树森推荐系统笔记——曝光过滤 & Bloom Filter
算法·推荐算法
qystca1 小时前
洛谷 P1706 全排列问题 C语言
算法
古希腊掌管学习的神1 小时前
[LeetCode-Python版]相向双指针——611. 有效三角形的个数
开发语言·python·leetcode
浊酒南街1 小时前
决策树(理论知识1)
算法·决策树·机器学习
雨中rain1 小时前
Linux -- 从抢票逻辑理解线程互斥
linux·运维·c++
就爱学编程1 小时前
重生之我在异世界学编程之C语言小项目:通讯录
c语言·开发语言·数据结构·算法
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学