CoT进阶:Self Consistency, Least-To-Most

CoT进阶

    • [一:Self Consistency](#一:Self Consistency)
      • [1.1 方法简介](#1.1 方法简介)
      • [1.2 实验](#1.2 实验)
      • [1.3 结果](#1.3 结果)
    • 二:Least-to-most
      • [2.1 方法简介](#2.1 方法简介)
      • [2.2 示例](#2.2 示例)
      • [2.3 结果](#2.3 结果)

一:Self Consistency

题目: SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS

机构:Google Brain, ICLR 2023

论文: https://arxiv.org/pdf/2203.11171.pdf

任务: 对于复杂问题而言,往往可以从多条推理路径得到最终的答案,因此将原来的CoT贪心解码进行优化,提出一种Self Consistency的解码算法

特点: sample-and-marginalize,投票,能够避免CoT的解码的局部最优以及输出重复,可以视作一种"self-ensemble",无需训练/标注/微调,很容易与现存的采样算法,比如 temperature sampling, top-k samplingnucleus sampling即插即用。

前置相关工作:CoT

1.1 方法简介

  1. 利用CoT prompting大模型
  2. 将CoT中的贪心解码替换为采样生成一组推理路径
  3. 答案一致性投票

关于NLG的各种采样算法:Greedy Search (Maximization),Beam Search,Temperature Sampling,Top-K Sampling,Top-P Sampling (Nucleus sampling),可以参见:

  1. https://www.cnblogs.com/miners/p/14950681.html
  2. THE CURIOUS CASE OF NEURAL TEXT DeGENERATION

1.2 实验

  • Arithmetic Reasoning
  • Commonsense and Symbolic Reasoning
  • SELF-CONSISTENCY HELPS WHEN CHAIN-OF-THOUGHT HURTS PERFORMANCE
  • Comparison to Sample-and-Rank
  • Comparison to Beam Search
  • Comparison to Ensemble-based Approaches
  • Self-Consistency is Robust to Sampling Strategies and Scaling
  • Self-Consistency Improves Robustness to Imperfect Prompts
  • Self-Consistency Works for Non-Natural-Language Reasoning Paths and Zero-shot CoT

1.3 结果

二:Least-to-most

题目: LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS

机构:Google Brain, ICLR 2023

论文: https://arxiv.org/pdf/2205.10625.pdf

任务: 为了克服CoT在easy-to-hard示例学习中的泛化性

方法:将复杂的问题分解为一系列的更简单的子问题,然后一个接一个解决,每一个待解决的子问题,都会被上一个已经解决好的子问题的答案促进

特点: 方法中的两个阶段都是通过几次提示(few-shot prompting)来实现的,因此在任何阶段都不需要训练或微调

前置相关工作:CoT,self consistency

2.1 方法简介

为了解决easy-to-hard的泛化性问题,提出Least-to-most prompting方法,它包含两个阶段:

  1. 将一个复杂的问题,分解为一序列简单的子问题
  2. 依次解决这些子问题,每一个待解决的子问题,都需要历史已经解决的子问题的答案来促进

2.2 示例

该论文在SYMBOLIC MANIPULATION,COMPOSITIONAL GENERALIZATION,MATH REASONING进行了实验,这儿展示MATH REASONING的示例以及结果
Least-to-most 样例:

CoT 样例:

2.3 结果

相关推荐
小众AI2 小时前
AI-on-the-edge-device - 将“旧”设备接入智能世界
人工智能·开源·ai编程
舟寒、2 小时前
【论文分享】Ultra-AV: 一个规范化自动驾驶汽车纵向轨迹数据集
人工智能·自动驾驶·汽车
dreadp5 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
梦云澜5 小时前
论文阅读(十二):全基因组关联研究中生物通路的图形建模
论文阅读·人工智能·深度学习
远洋录5 小时前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董6 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师7 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
摸鱼仙人~8 小时前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
python算法(魔法师版)8 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui9 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama