CoT进阶:Self Consistency, Least-To-Most

CoT进阶

    • [一:Self Consistency](#一:Self Consistency)
      • [1.1 方法简介](#1.1 方法简介)
      • [1.2 实验](#1.2 实验)
      • [1.3 结果](#1.3 结果)
    • 二:Least-to-most
      • [2.1 方法简介](#2.1 方法简介)
      • [2.2 示例](#2.2 示例)
      • [2.3 结果](#2.3 结果)

一:Self Consistency

题目: SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT REASONING IN LANGUAGE MODELS

机构:Google Brain, ICLR 2023

论文: https://arxiv.org/pdf/2203.11171.pdf

任务: 对于复杂问题而言,往往可以从多条推理路径得到最终的答案,因此将原来的CoT贪心解码进行优化,提出一种Self Consistency的解码算法

特点: sample-and-marginalize,投票,能够避免CoT的解码的局部最优以及输出重复,可以视作一种"self-ensemble",无需训练/标注/微调,很容易与现存的采样算法,比如 temperature sampling, top-k samplingnucleus sampling即插即用。

前置相关工作:CoT

1.1 方法简介

  1. 利用CoT prompting大模型
  2. 将CoT中的贪心解码替换为采样生成一组推理路径
  3. 答案一致性投票

关于NLG的各种采样算法:Greedy Search (Maximization),Beam Search,Temperature Sampling,Top-K Sampling,Top-P Sampling (Nucleus sampling),可以参见:

  1. https://www.cnblogs.com/miners/p/14950681.html
  2. THE CURIOUS CASE OF NEURAL TEXT DeGENERATION

1.2 实验

  • Arithmetic Reasoning
  • Commonsense and Symbolic Reasoning
  • SELF-CONSISTENCY HELPS WHEN CHAIN-OF-THOUGHT HURTS PERFORMANCE
  • Comparison to Sample-and-Rank
  • Comparison to Beam Search
  • Comparison to Ensemble-based Approaches
  • Self-Consistency is Robust to Sampling Strategies and Scaling
  • Self-Consistency Improves Robustness to Imperfect Prompts
  • Self-Consistency Works for Non-Natural-Language Reasoning Paths and Zero-shot CoT

1.3 结果

二:Least-to-most

题目: LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS

机构:Google Brain, ICLR 2023

论文: https://arxiv.org/pdf/2205.10625.pdf

任务: 为了克服CoT在easy-to-hard示例学习中的泛化性

方法:将复杂的问题分解为一系列的更简单的子问题,然后一个接一个解决,每一个待解决的子问题,都会被上一个已经解决好的子问题的答案促进

特点: 方法中的两个阶段都是通过几次提示(few-shot prompting)来实现的,因此在任何阶段都不需要训练或微调

前置相关工作:CoT,self consistency

2.1 方法简介

为了解决easy-to-hard的泛化性问题,提出Least-to-most prompting方法,它包含两个阶段:

  1. 将一个复杂的问题,分解为一序列简单的子问题
  2. 依次解决这些子问题,每一个待解决的子问题,都需要历史已经解决的子问题的答案来促进

2.2 示例

该论文在SYMBOLIC MANIPULATION,COMPOSITIONAL GENERALIZATION,MATH REASONING进行了实验,这儿展示MATH REASONING的示例以及结果
Least-to-most 样例:

CoT 样例:

2.3 结果

相关推荐
爱看科技20 分钟前
苹果AR/VR头显路线图曝光,微美全息推进AI/AR智能眼镜新品开启视觉体验篇章
人工智能·ar·vr
呆头鹅AI工作室27 分钟前
[2025CVPR]SEEN-DA:基于语义熵引导的领域感知注意力机制
人工智能·深度学习·机器学习
吴佳浩29 分钟前
Python入门指南-AI番外-MCP完整教程:从零开始学会Model Context Protocol
人工智能·python·mcp
加油吧zkf42 分钟前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
西柚小萌新1 小时前
【深度学习:进阶篇】--4.3.seq2seq与Attention机制
人工智能·深度学习
求索小沈1 小时前
ubuntu22.04 安装cuda cudnn
人工智能·深度学习
阿里云大数据AI技术1 小时前
AI搜索 MCP最佳实践
数据库·人工智能·搜索引擎
大千AI助手1 小时前
蒙特卡洛方法:随机抽样的艺术与科学
人工智能·机器学习·贝叶斯·概率·蒙特卡洛·随机
山顶望月川1 小时前
并行科技MaaS平台支持文心4.5系列开源模型调用
人工智能·机器学习·编辑器
顾道长生'1 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解