SparkSql

SparkSql

pom.xml

javascript 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>spark_sql</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.27</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!-- 该插件用于将 Scala 代码编译成 class 文件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <!-- 声明绑定到 maven 的 compile 阶段 -->
                        <goals>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.1.0</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

SparkSQL01_Demo

javascript 复制代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

object SparkSQL01_Demo {
  def main(args:Array[String])={
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()

    val df = spark.read
      .format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/localstreamdata")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "000000")
      .option("dbtable", "normal_data")
      .load()
    df.show

    spark.close()
  }

}

sparksql写入mysql

提前在mysql中建好表

javascript 复制代码
use localstreamdata;
DESCRIBE normal_data;
CREATE TABLE IF NOT EXISTS gpb2 (
    stream_id varchar(20),
    stream_time datetime,
    stream_user_id bigint(20),
    stream_money int(11),
    stream_consume_type int(11),
    stream_consume_location varchar(50),
    stream_sign_location varchar(50),
    stream_time_date int(11),
    stream_time_minute varchar(20),
    stream_seconds int(11),
    stream_is_new int(3),
    stream_is_normal varchar(20)
);
DESCRIBE gpb2;
alter table gpb2 change stream_consume_location stream_consume_location varchar(100) character set utf8;
alter table gpb2 change stream_sign_location stream_sign_location varchar(100) character set utf8;
javascript 复制代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.{Column, SaveMode, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql._

object SparkSQL01_Demo {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()

    val df = spark.read
      .format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/localstreamdata?characterEncoding=utf8&useSSL=false")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "000000")
      .option("dbtable", "normal_data")
      .load()

    df.show

    import spark.implicits._
    val cleanedDF = df.withColumn("stream_consume_location", your_clean_function(col("stream_consume_location")))

    cleanedDF.write
      .format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/localstreamdata?characterEncoding=utf8&useSSL=false")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "000000")
      .option("dbtable", "gpb2")
      .mode(SaveMode.Append)
      .save()

    spark.close()
  }

  def your_clean_function(str: Column): Column = {
    // 根据需要实现清理或转换逻辑
    // 返回清理后的字符串列
    // 示例代码:
    str
  }
}
javascript 复制代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.{Column, SaveMode, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql._

object SparkSQL01_Demo {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
    val spark = SparkSession.builder().config(sparkConf).getOrCreate()

    val df = spark.read
      .format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/localstreamdata?characterEncoding=utf8&useSSL=false")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "000000")
      .option("dbtable", "normal_data")
      .load()

    df.show

    import spark.implicits._
    //val cleanedDF = df.withColumn("stream_consume_location", your_clean_function(col("stream_consume_location")))

    df.write
      .format("jdbc")
      .option("url", "jdbc:mysql://hadoop102:3306/localstreamdata?characterEncoding=utf8&useSSL=false")
      .option("driver", "com.mysql.jdbc.Driver")
      .option("user", "root")
      .option("password", "000000")
      .option("dbtable", "gpb2")
      .mode(SaveMode.Append)
      .save()

    spark.close()
  }
/*
  def your_clean_function(str: Column): Column = {
    // 根据需要实现清理或转换逻辑
    // 返回清理后的字符串列
    // 示例代码:
    str
  }

 */
}
相关推荐
计算机毕业设计木哥2 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
IT毕设梦工厂4 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
大数据CLUB11 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
计算机编程小央姐13 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
孟意昶17 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
智海观潮21 小时前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
盛源_011 天前
hadoop的api操作对象存储
hdfs·spark
欧阳方超1 天前
Spark(1):不依赖Hadoop搭建Spark环境
大数据·hadoop·spark
Light601 天前
领码SPARK融合平台 · TS × Java 双向契约 —— 性能与治理篇|缓存分段与版本秩序
低代码·缓存·spark