如何用AI大模型实现简单的情感分析?

前言

本文旨在用AI大模型实现简单的情感分析。情感分析应用在产品评论分析、社交媒体监控、智能客服等领域,可谓十分广阔。随着人工智能技术的迅速发展,越来越多的应用场景开始尝试利用AI进行情感分析。情感分析是一种自然语言处理任务,旨在检测文本中的情感倾向,包括正面、负面或中性。在本文中,我们将探讨如何使用AI大模型实现情感分析功能。

一、选择合适的模型

要进行情感分析,首先需要选择一个适合的AI大模型。针对中文情感分析任务,我们可以选择transformers库中的中文预训练模型,如"uer/roberta-base-finetuned-dianping-chinese"。该模型经过了针对中文文本的情感分析训练,能够更好地理解和预测中文文本的情感倾向。

二、加载模型

在Colab上导入Transformers包:

py 复制代码
!pip install transformers

在Python环境中,我们可以使用transformers库来加载预训练模型。通过执行以下代码,我们可以将模型加载到内存中:

py 复制代码
from transformers import pipeline
classifer = pipeline('sentiment-analysis')

从transformers库中导入了pipeline函数,并使用该函数创建了一个用于情感分析的分类器

三、输入文本

接下来,我们需要将待分析的文本输入到模型中。

py 复制代码
result = classifer('i love you')

四、运行预测

将文本输入到模型后,我们打印result

py 复制代码
print(result)

{'label': 'POSITIVE', 'score': 0.9998656511306763}

运行上述代码后,result将包含一个字典,其中包含情感预测的结果。字典可能包含以下键值对:

  • 'label': 预测的情感标签(正面或负面)。
  • 'score': 预测的情感得分,范围在0到1之间,其中1表示非常正面或非常负面,0表示中性。

再举两个栗子:

py 复制代码
result = classifer('shut up')
print(result)

{'label': 'NEGATIVE', 'score': 0.9992936849594116}

没有问题

py 复制代码
result = classifer('遥遥领先')
print(result)

{'label': 'NEGATIVE', 'score': 0.8616330027580261}

我们发现'遥遥领先'明显是积极的,怎么它识别出来的是消极的,我们初步判断它不能识别中文。

于是我们给它加上中文模型

py 复制代码
# 中文模型
classifer = pipeline('sentiment-analysis', model="uer/roberta-base-finetuned-dianping-chinese")

加上中文模型,我们再次运行代码:

py 复制代码
result = classifer('遥遥领先')
print(result)

{'label': 'positive (stars 4 and 5)', 'score': 0.941333532333374}

根据输出结果,我们可以得知现在'遥遥领先'的情感倾向为正面,并且具有较高的可信度(得分接近于1)。

五、结语

至此,我们已经用实现了简单的情感分析,我们只需稍加训练,就能让它读懂中文,这就是AI大模型的力量。

不仅如此,情感分析也只是AI大模型应用的冰山一角。随着模型的持续发展和优化,我们可以预见到未来会有更多激动人心的应用场景出现。

总之,通过与AI大模型的结合,我们可以实现许多以前无法想象的事情,解锁人类智慧的新纪元。如果你对AI感兴趣,可以关注我,让我们一起期待AI大模型在未来会带来更多的惊喜和突破!。

我的Gitee: CodeSpace (gitee.com)

技术小白记录学习过程,有错误或不解的地方还请评论区留言,如果这篇文章对你有所帮助请 "点赞 收藏+关注" ,感谢支持!!

相关推荐
rengang6621 小时前
01-深度学习概述:介绍深度学习的基本概念和发展背景
人工智能·深度学习
Baihai_IDP21 小时前
探讨超长上下文推理的潜力
人工智能·面试·llm
文火冰糖的硅基工坊21 小时前
[人工智能-大模型-116]:模型层 - 用通俗易懂的语言,阐述离散卷积的神奇功能和背后的物理意义
人工智能·深度学习·cnn
rengang6621 小时前
13-卷积神经网络(CNN):探讨CNN在图像处理中的应用和优势
图像处理·人工智能·深度学习·神经网络·cnn
DO_Community21 小时前
裸金属 vs. 虚拟化 GPU 服务器:AI 训练与推理应该怎么选
运维·服务器·人工智能·llm·大语言模型
科技峰行者21 小时前
华为发布Atlas 900 DeepGreen AI服务器:单机柜100PF算力重构AI训练基础设施
服务器·人工智能·华为·aigc·gpu算力
weixin_3077791321 小时前
应对不规则负载的异步ML模型服务AWS架构设计
人工智能·深度学习·机器学习·云计算·aws
Mintopia21 小时前
💰 金融Web应用中的AIGC风险控制技术与合规适配
前端·javascript·aigc
Xander W21 小时前
基于K8s集群的PyTorch DDP 框架分布式训练测试(开发机版)
人工智能·pytorch·分布式·python·深度学习·kubernetes
Wah-Aug21 小时前
基于 PyTorch 的 UNet 与 NestedUNet 图像分割
人工智能·pytorch·计算机视觉