chatGPT培训老师AIGC培训讲师叶梓:大模型这么火,我们在使用时应该关注些什么?-6

以下为叶老师讲义分享:

P25-P29

提示工程的模式

节省计算资源:

在微调过程中,不需要重新训练整个模型,因此可以节省计算资源。

提高特定任务上的性能:

通过微调,模型可以适应特定任务的语言特征和模式,从而提高模型的性能。

保留模型的通用性:

预训练模型具有较高的通用性能,微调可以帮助模型适应特定任务的语言特征和模式,从而提高模型的通用性。

减少数据需求:

预训练模型已经过大量训练,因此在微调过程中可以使用较少的数据。

微调大模型的意义

节省计算资源:

在微调过程中,不需要重新训练整个模型,因此可以节省计算资源。

提高特定任务上的性能:

通过微调,模型可以适应特定任务的语言特征和模式,从而提高模型的性能。

保留模型的通用性:

预训练模型具有较高的通用性能,微调可以帮助模型适应特定任务的语言特征和模式,从而提高模型的通用性。

减少数据需求:

预训练模型已经过大量训练,因此在微调过程中可以使用较少的数据。

微调大模型的方法(Adapter-Tuning)

  • 微调时冻结预训练模型的主体,由Adapter模块学习特定下游任务的知识。
  • Adapter调优的参数量大约为LM参数的3.6%。

Prefix Tuning只是在每个任务前有少量的prefix的参数,

  • 比如翻译任务,可以在每句话的前面加上"翻译:"来引导模型进行翻译功能。
  • Prefix Tuning参数规模约为LM模型整体规模的0.1%。

因为离线的Prompt对于连续的神经网络只是次优解,prompt的词之间是彼此关联的,需要将其关联起来。

于是,P-Tuning将一些伪prompt输入至LSTM中,然后利用LSTM的输出向量来替代原始的prompt token,然后一起输入至预训练语言模型中。

LSTM和随着预训练语言模型一起训练。


chatGPT讲师AIGC讲师叶梓:大模型这么火,我们在使用时应该关注些什么?未完,下一章继续......

相关推荐
人工智能训练5 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor7 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19827 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6008 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房8 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习