chatGPT培训老师AIGC培训讲师叶梓:大模型这么火,我们在使用时应该关注些什么?-6

以下为叶老师讲义分享:

P25-P29

提示工程的模式

节省计算资源:

在微调过程中,不需要重新训练整个模型,因此可以节省计算资源。

提高特定任务上的性能:

通过微调,模型可以适应特定任务的语言特征和模式,从而提高模型的性能。

保留模型的通用性:

预训练模型具有较高的通用性能,微调可以帮助模型适应特定任务的语言特征和模式,从而提高模型的通用性。

减少数据需求:

预训练模型已经过大量训练,因此在微调过程中可以使用较少的数据。

微调大模型的意义

节省计算资源:

在微调过程中,不需要重新训练整个模型,因此可以节省计算资源。

提高特定任务上的性能:

通过微调,模型可以适应特定任务的语言特征和模式,从而提高模型的性能。

保留模型的通用性:

预训练模型具有较高的通用性能,微调可以帮助模型适应特定任务的语言特征和模式,从而提高模型的通用性。

减少数据需求:

预训练模型已经过大量训练,因此在微调过程中可以使用较少的数据。

微调大模型的方法(Adapter-Tuning)

  • 微调时冻结预训练模型的主体,由Adapter模块学习特定下游任务的知识。
  • Adapter调优的参数量大约为LM参数的3.6%。

Prefix Tuning只是在每个任务前有少量的prefix的参数,

  • 比如翻译任务,可以在每句话的前面加上"翻译:"来引导模型进行翻译功能。
  • Prefix Tuning参数规模约为LM模型整体规模的0.1%。

因为离线的Prompt对于连续的神经网络只是次优解,prompt的词之间是彼此关联的,需要将其关联起来。

于是,P-Tuning将一些伪prompt输入至LSTM中,然后利用LSTM的输出向量来替代原始的prompt token,然后一起输入至预训练语言模型中。

LSTM和随着预训练语言模型一起训练。


chatGPT讲师AIGC讲师叶梓:大模型这么火,我们在使用时应该关注些什么?未完,下一章继续......

相关推荐
CareyWYR9 分钟前
每周AI论文速递(2506209-250613)
人工智能
MYH51618 分钟前
无监督的预训练和有监督任务的微调
人工智能
binbinaijishu8835 分钟前
PyTorch:让深度学习飞入寻常百姓家(从零开始玩转张量与神经网络!)
pytorch·深度学习·神经网络·其他
Jet450539 分钟前
玩转ChatGPT:DeepSeek实战(核酸蛋白序列核对)
人工智能·chatgpt·kimi·deepseek
几夏经秋40 分钟前
图文教程——Deepseek最强平替工具免费申请教程——国内edu邮箱可用
人工智能
中國龍在廣州1 小时前
AI首次自主发现人工生命
人工智能·科技·机器学习·机器人
I-NullMoneyException2 小时前
智能语音交互技术深度解析:从原理到产业实践
人工智能
创小匠2 小时前
创客匠人:AI重构知识IP定位与变现效率新范式
人工智能·tcp/ip·重构
love530love2 小时前
是否需要预先安装 CUDA Toolkit?——按使用场景分级推荐及进阶说明
linux·运维·前端·人工智能·windows·后端·nlp
SunsPlanter3 小时前
机器学习--分类
人工智能·机器学习·分类