第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)

在本文中,我们将了解单层感知器及其使用 TensorFlow 库在Python中的实现。神经网络的工作方式与我们的生物神经元的工作方式相同。

生物神经元的结构

生物神经元具有三个基本功能

  • 接收外部信号。

  • 处理信号并增强是否需要发送信息。

  • 将信号传递给目标细胞,目标细胞可以是另一个神经元或腺体。

同样,神经网络也能发挥作用。

机器学习中的神经网络

什么是单层感知器?

它是最古老且最早引入的神经网络之一。它是由弗兰克·罗森布拉特 (Frank Rosenblatt)1958 年 提出的。感知器也称为人工神经网络。感知器主要用于计算AND、OR、NOR等具有二进制输入和二进制输出的逻辑门。

感知器的主要功能是:-

  • 从输入层获取输入

  • 对它们进行加权并总结。

  • 将总和传递给非线性函数以产生输出。

单层神经网络

这里的激活函数可以是sigmoid、tanh、relu等任何函数。根据需求,我们将选择最合适的非线性激活函数以产生更好的结果。现在让我们实现一个单层感知器。

单层感知器的实现

现在让我们使用 TensorFlow 库使用"MNIST"数据集实现一个单层感知器。

**Step1:**导入必要的库

  • Numpy -- Numpy 数组非常快,可以在很短的时间内执行大量计算。

  • Matplotlib -- 该库用于绘制可视化效果。

  • TensorFlow -- 这是一个用于机器学习和人工智能的开源库,提供一系列函数以通过单行代码实现复杂的功能。

Python3

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt

# 开启内联绘图
%matplotlib inline

**步骤 2:**现在使用导入版本的张量流中的"Keras"加载数据集。

Python3

python 复制代码
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

这段代码导入了一些常用的Python库,包括NumPy(用于数值计算)、TensorFlow(用于深度学习)、Keras(用于构建神经网络模型)以及Matplotlib(用于绘图和数据可视化)。通过 %matplotlib inline,我们可以在Jupyter Notebook或IPython环境中直接在输出单元格中显示图形,而不需要单独的窗口。

这些库的使用使得在进行深度学习和数据可视化任务时更加方便。

**步骤 3:**现在显示数据集中单个图像的形状和图像。图像大小包含28*28的矩阵,训练集长度为60,000,测试集长度为10,000。

Python3

python 复制代码
# 获取训练集的长度
len(x_train)

# 获取测试集的长度
len(x_test)

# 获取第一个训练图像的形状
x_train[0].shape

# 显示第一个训练图像
plt.matshow(x_train[0])

这段代码执行以下操作:

  1. len(x_train) 返回训练集中样本的数量。
  2. len(x_test) 返回测试集中样本的数量。
  3. x_train[0].shape 获取第一个训练图像的形状,通常是一个28x28像素的二维数组。
  4. plt.matshow(x_train[0]) 用Matplotlib库显示第一个训练图像,可以通过该图像来查看手写数字的外观。

这些操作有助于了解MNIST数据集的规模和内容,并可以用于数据预处理和可视化。

输出:

来自训练数据集的样本图像

**步骤 4:**现在标准化数据集,以便快速准确地进行计算。

Python3

python 复制代码
# 对数据集进行标准化
x_train = x_train / 255
x_test = x_test / 255

# 扁平化数据集以便进行模型构建
x_train_flatten = x_train.reshape(len(x_train), 28*28)
x_test_flatten = x_test.reshape(len(x_test), 28*28)

这段代码执行以下操作:

  1. 对训练集 x_train 和测试集 x_test 进行标准化,将像素值从0到255的范围缩放到0到1的范围,这是一种常见的数据预处理步骤。

  2. 扁平化数据集,将每个图像从一个二维数组(28x28像素)转换为一个一维数组(784个像素),以便于后续的模型构建。这是因为深度学习模型通常需要输入的是一维数据。

这些操作是为了准备数据以用于深度学习模型的训练,以便更好地处理图像数据。

**第5步:**构建具有单层感知的神经网络。在这里我们可以观察到,该模型是一个单层感知器,仅包含一个输入层和一个输出层,不存在隐藏层。

Python3

python 复制代码
model = keras.Sequential([
    keras.layers.Dense(10, input_shape=(784,), activation='sigmoid')
])

model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)

model.fit(x_train_flatten, y_train, epochs=5)

这段代码执行以下操作:

  1. 创建一个Keras顺序模型,该模型包含一个具有10个神经元的全连接层(keras.layers.Dense),输入形状为(784,),激活函数为'sigmoid'。这是一个简单的神经网络模型。

  2. 编译模型,指定优化器为'adam',损失函数为'sparse_categorical_crossentropy'(适用于多类别分类问题),并选择评估指标为'accuracy'(准确度)。

  3. 使用训练数据 x_train_flatten 和相应的标签 y_train 对模型进行训练,训练周期数为5(epochs=5)。

这些操作构建了一个简单的神经网络模型,并使用训练数据对其进行了训练,以便用于多类别分类任务,例如手写数字识别。

输出:

在训练过程中,通常会产生一系列的训练日志,包括损失和准确度等信息。这些信息会在训练的每个周期(epoch)后显示。由于这些信息的输出取决于您的运行环境,我无法提供确切的训练输出。您可以将代码放入一个Jupyter Notebook或Python脚本中运行以查看详细的训练输出。

通常,您可以期望在每个周期的训练输出中看到损失值和准确度的变化,以便跟踪模型的训练进展。当训练完成后,您可以使用模型进行预测,并评估其性能,例如在测试数据上计算准确度。这些步骤通常会在训练后的代码中进行。如果您有特定的输出或问题,可以提供更多详细信息,以便我能够提供更具体的帮助。

**步骤6:**输出模型在测试数据上的准确率。

Python3

python 复制代码
model.evaluate(x_test_flatten, y_test)

这段代码执行了模型的评估操作,使用测试数据 x_test_flatten 和相应的测试标签 y_test 来计算模型在测试数据上的性能指标。这些性能指标通常包括损失值和准确度等,用于衡量模型在测试数据上的表现。评估的结果将根据模型的性能和测试数据而异,通常以一个包含指标值的列表返回。

输出:

python 复制代码
[损失值, 准确度]
  • 损失值 表示模型在测试数据上的损失值,通常是一个非负数,表示模型对测试数据的拟合程度。
  • 准确度 表示模型在测试数据上的准确度,通常以百分比形式表示,表示模型在测试数据中正确分类的比例。

具体的数值将根据模型的训练和测试数据集而有所不同。您可以运行这段代码以查看实际的输出结果,以便了解模型在测试数据上的性能。

相关推荐
XianxinMao5 分钟前
Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
深度学习·架构·transformer
88号技师1 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手1 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师1 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
2301_764441331 小时前
基于python语音启动电脑应用程序
人工智能·语音识别
HyperAI超神经2 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
galileo20162 小时前
转化为MarkDown
人工智能
说私域2 小时前
私域电商逆袭密码:AI 智能名片小程序与商城系统如何梦幻联动
人工智能·小程序
请站在我身后3 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
love you joyfully3 小时前
目标检测与R-CNN——paddle部分
人工智能·目标检测·cnn·paddle