Python实战:绘制直方图的示例代码,数据可视化获取样本分布特征

文章目录

一、初步

对于大量样本来说,如果想快速获知其分布特征,最方便的可视化方案就是直方图,即统计落入不同区间中的样本个数。

以正态分布为例

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
xs = np.random.normal(0, 1, size=(5000))
fig = plt.figure()
for i,b in enumerate([10, 50, 100, 200],1):
    ax = fig.add_subplot(2,2,i)
    plt.hist(xs, bins=b)
plt.show()

其中bins参数用于调控区间个数,出图结果如下

二、参数

直方图函数的定义如下

python 复制代码
hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)

除了x和bins之外,其他参数含义为

  • range 绘图区间,默认将样本所有范围纳入其中
  • density 为True时,纵坐标单位是占比
  • weights 与x个数相同,表示每个值所占权重
  • cumulative 为True时,将采取累加模式
  • bottom y轴起点,有了这个,可以对直方图进行堆叠
  • histtype 绘图类型
  • align 对其方式,可选left, mid, right三种,代表左中右
  • oritentation 绘制方向,可选vertical和horizontal两种
  • rwitdth 数据条宽度
  • log 为True时,开启对数坐标
  • color, label 颜色,标签
  • stacked

三、绘图类型

histtype共有4个选项,分别是bar, barstacked, step以及stepfilled,其中barstacked表示堆叠,下面对另外三种参数进行演示

python 复制代码
types = ['bar', 'step', 'stepfilled']
fig = plt.figure()
for i,t in enumerate(types,1):
    ax = fig.add_subplot(1,3,i)
    plt.hist(xs, bins=50, histtype=t, rwidth=0.5)
plt.show()

效果如下

堆叠直方图,就是把多个直方图叠在一起

python 复制代码
bins = [10, 30, 100]
ws = [1, 0.7, 0.5]
for b,w in zip(bins, ws):
    print(b,w)
    plt.hist(xs, bins=b, density=True, 
        histtype='barstacked', rwidth = w, alpha=w)
plt.show()

效果如下

四、多组数据直方图对比

直方图中设置了rwidth选项,这意味着可以通过合理安排数据条宽度,以实现多组数据直方图在一个图像中更加

python 复制代码
N = 10000
labels = ["norm", "power", "poisson"]
data = np.array([
    np.random.normal(0, 1, size=N)**2,
    np.random.power(5, size=N),
    np.random.uniform(0, 1, size=N)
]).T
plt.hist(data, 50, density=True, range=(0,1), label=labels)
plt.legend()
plt.show()

其中,data为3组统计数据,hist函数会自行规划画布,效果如下


【最新Python全套从入门到精通学习资源,文末免费领取!】

Python技术资源分享

如果你对Python感兴趣,学好 Python 不论是就业、副业赚钱、还是提升学习、工作效率,都是非常不错的选择,但要有一个系统的学习规划。

小编是一名Python开发工程师 ,自己整理了一套 【最新的Python系统学习教程】 ,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。

如果你是准备学习Python或者正在学习,下面这些你应该能用得上:

1、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

2、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

3、精品书籍

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

4、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

5、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

6、清华编程大佬出品《漫画看学Python》

用通俗易懂的漫画,来教你学习Python,让你更容易记住,并且不会枯燥乏味。

7、Python副业兼职与全职路线


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

相关推荐
uppp»42 分钟前
深入理解 Java 反射机制:获取类信息与动态操作
java·开发语言
Yan-英杰44 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
羑悻的小杀马特1 小时前
探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
科技·ai大模型·deepseek
weixin_307779132 小时前
Azure上基于OpenAI GPT-4模型验证行政区域数据的设计方案
数据仓库·python·云计算·aws
玩电脑的辣条哥3 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
taoqick3 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
多想和从前一样5 小时前
Django 创建表时 “__str__ ”方法的使用
后端·python·django
ll7788115 小时前
LeetCode每日精进:20.有效的括号
c语言·开发语言·算法·leetcode·职场和发展
charles_vaez6 小时前
开源模型应用落地-LangGraph101-探索 LangGraph 短期记忆
深度学习·语言模型·自然语言处理
WHATEVER_LEO7 小时前
【每日论文】Latent Radiance Fields with 3D-aware 2D Representations
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理