时间序列预测:深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

本文介绍->给大家推荐一下我的时间序列预测实战专栏,本专栏平均质量分98分,而且本专栏目前免费阅读。其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的内容,其中的实战案例不仅有简单的模型类似于机器学习的ARIMA、Xgboost也有复杂的类似于深度学习的TPA-LSTM,还有个人创新的模型堆叠CNN-GRU-LSTM,同时具有数据分析的内容教你如何从数据的角度进行选参和调参从而提供模型精度,本专栏的内容后期会持续的进行更新,复现各种最新的时间序列预测模型。

**适用对象->**时间序列的初学者、时间序列的工作者、数据分析的初学者。

**本人介绍->**本人写作的时间序列预测模型应用于某水果公司的业务上目前被上2000+人数使用。

本专栏的目录->

概念理解

15种时间序列预测方法总结(包含多种方法代码实现)

数据分析

时间序列预测中的数据分析->周期性、相关性、滞后性、趋势性、离群值等特性的分析方法

机器学习------难度等级(⭐⭐)

时间序列预测实战(四)(Xgboost)(Python)(机器学习)图解机制原理实现时间序列预测和分类(附一键运行代码资源下载和代码讲解)

深度学习------难度等级(⭐⭐⭐⭐)

时间序列预测实战(五)基于Bi-LSTM横向搭配LSTM进行回归问题解决

时间序列预测实战(七)(TPA-LSTM)结合TPA注意力机制的LSTM实现多元预测

时间序列预测实战(三)(LSTM)(Python)(深度学习)时间序列预测(包括运行代码以及代码讲解)

时间序列预测实战(十一)用SCINet实现滚动预测功能(附代码+数据集+原理介绍)

Transformer------难度等级(⭐⭐⭐⭐)

时间序列预测模型实战案例(八)(Informer)个人数据集、详细参数、代码实战讲解

时间序列预测模型实战案例(一)深度学习华为MTS-Mixers模型

个人创新模型------难度等级(⭐⭐⭐⭐⭐)

时间序列预测实战(十)(CNN-GRU-LSTM)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测

传统的时间序列预测模型(⭐⭐)

时间序列预测实战(二)(Holt-Winter)(Python)结合K-折交叉验证进行时间序列预测实现企业级预测精度(包括运行代码以及代码讲解)

时间序列预测实战(六)深入理解ARIMA包括差分和相关性分析

融合模型------难度等级(⭐⭐⭐)

时间序列预测实战(九)PyTorch实现融合移动平均和LSTM-ARIMA进行长期预测

相关推荐
努力学习的小廉24 分钟前
我爱学算法之—— 分治-归并
c++·算法·1024程序员节
yanxing.D28 分钟前
penCV轻松入门_面向python(第七章 图像平滑处理)
图像处理·人工智能·opencv·计算机视觉
Gorgous—l34 分钟前
数据结构算法学习:LeetCode热题100-链表篇(下)(随机链表的复制、排序链表、合并 K 个升序链表、LRU 缓存)
数据结构·学习·算法
仰泳的熊猫34 分钟前
LeetCode:200. 岛屿数量
数据结构·c++·算法·leetcode
流星52112234 分钟前
GC 如何判断对象该回收?从可达性分析到回收时机的关键逻辑
java·jvm·笔记·学习·算法
defaulter40 分钟前
Codeforces Round 1049 (Div. 2)C. Ultimate Value
算法·codeforces
骥龙1 小时前
1.1、开篇:AI如何重塑网络安全攻防格局?
人工智能·安全·web安全
微学AI1 小时前
国产数据库替代MongoDB的技术实践过程:金仓多模数据库在电子证照系统中的深度应用
数据库·人工智能·1024程序员节
java1234_小锋1 小时前
[免费]基于Python的YOLO深度学习垃圾分类目标检测系统【论文+源码】
python·深度学习·yolo·垃圾分类·垃圾分类检测
gddkxc1 小时前
AI驱动的客户管理:悟空AI CRM的核心功能与优势
人工智能