pytorch中对nn.BatchNorm2d()函数的理解

pytorch中对BatchNorm2d函数的理解

  • 简介
  • 计算
  • [3. Pytorch的nn.BatchNorm2d()函数](#3. Pytorch的nn.BatchNorm2d()函数)
  • [4 代码示例](#4 代码示例)

简介

机器学习中,进行模型训练之前,需对数据做归一化处理,使其分布一致。在深度神经网络训练过程中,通常一次训练是一个batch,而非全体数据。每个batch具有不同的分布产生了internal covarivate shift问题------在训练过程中,数据分布会发生变化,对下一层网络的学习带来困难。Batch Normalization强行将数据拉回到均值为0,方差为1的正太分布上,一方面使得数据分布一致,另一方面避免梯度消失。

计算

如图所示:

3. Pytorch的nn.BatchNorm2d()函数

其主要需要输入4个参数:

(1)num_features:输入数据的shape一般为[batch_size, channel, height, width], num_features为其中的channel;

(2)eps: 分母中添加的一个值,目的是为了计算的稳定性,默认:1e-5;

(3)momentum: 一个用于运行过程中均值和方差的一个估计参数,默认值为0.1.

(4)affine:当设为true时,给定可以学习的系数矩阵 γ \gamma γ和 β \beta β

4 代码示例

复制代码
import torch

data = torch.ones(size=(2, 2, 3, 4))
data[0][0][0][0] = 25
print("data = ", data)

print("\n")

print("=========================使用封装的BatchNorm2d()计算================================")
BN = torch.nn.BatchNorm2d(num_features=2, eps=0, momentum=0)
BN_data = BN(data)
print("BN_data = ", BN_data)

print("\n")

print("=========================自行计算================================")
x = torch.cat((data[0][0], data[1][0]), dim=1)      # 1.将同一通道进行拼接(即把同一通道当作一个整体)
x_mean = torch.Tensor.mean(x)                       # 2.计算同一通道所有制的均值(即拼接后的均值)
x_var = torch.Tensor.var(x, False)                  # 3.计算同一通道所有制的方差(即拼接后的方差)

# 4.使用第一个数按照公式来求BatchNorm后的值
bn_first = ((data[0][0][0][0] - x_mean) / ( torch.pow(x_var, 0.5))) * BN.weight[0] + BN.bias[0]
print("bn_first = ", bn_first)


相关推荐
岁月的眸3 分钟前
【科普】贝叶斯神经网络与分形神经网络
人工智能·深度学习·神经网络
AI是草卖哩4 分钟前
PINN+贝叶斯:深度学习中的魔改新思路
人工智能·深度学习·贝叶斯·pinn
阿里云大数据AI技术9 分钟前
【跨国数仓迁移最佳实践4】MaxCompute 企业级能力升级:跨域访问控制与数据安全特性增强
大数据·人工智能·云计算
Swift社区14 分钟前
用 AI 解析采购订单,从上传到自动生成 Draft 订单全流程实战
人工智能
山烛24 分钟前
逻辑回归详解:从数学原理到实际应用
python·算法·机器学习·逻辑回归
TalkU浩克38 分钟前
DoRA详解:从LoRA到权重分解的进化
人工智能·深度学习·机器学习
聚客AI39 分钟前
⚡工程师的AGI落地指南:从基础概念到智能体开发的完整地图
人工智能·llm·agent
June bug1 小时前
将本地项目关联并推送到已有的 GitHub 仓库
python·github
从零开始学习人工智能1 小时前
Coze Studio:开源AI Agent开发工具的全方位实践指南
人工智能·开源
深度学习机器1 小时前
GLM-4.5系列模型导读,综合能力更强的高性价比模型
人工智能·llm·agent