机器人阻抗与导纳控制的区别

机器人自身的非线性动力学(由柔软性引起的)导致控制精度下降,因此难以描述准确的动力学。

导纳控制和阻抗控制都是基于位置与力关系的模式,被认为具有鲁棒性和安全性。然而,当机器人与刚体接触时,导纳控制常常变得不稳定,并且阻抗控制的性能会因摩擦而降低。

阻抗控制根据末端执行器的输入加速度、速度和位移,根据所需的机械阻抗参数调节末端执行器的输出力。在阻抗控制中,由于机械手本身的动力学成为实现所需机械特性的干扰之一,因此经常使用非线性补偿方法,例如计算扭矩方法。然而,由于摩擦等模型误差,控制精度很容易下降。另外,由于输入是末端执行器的位移和速度,因此除非发生这种位移和速度,否则无法产生输出力。也就是说,奇点避免和反向驱动能力很重要。

相反,导纳控制根据力传感器检测到的接触力,基于所需的机械导纳参数来调节末端执行器的位置、速度和加速度。在导纳控制中,当力传感器检测到突然的大的脉冲力时,例如,当与刚性环境接触时,基于接触力导出的期望位置和速度可能会发散。在这种情况下,操纵器的行为变得不稳定。此外,由于输入是接触力,因此无法响应在没有力传感器的位置发生的接触;在这种情况下,操纵器会变得僵硬,因为通常在导纳控制器的最终输出级中使用高增益位置控制器。扰动观测器可以估计接触力;然而,需要整个系统的准确模型。一般来说,在接触刚性环境时,阻抗控制比导纳控制相对更稳定,而在接触柔软环境时,导纳控制比阻抗控制相对更准确。然而,在接触环境未知且机械和几何特性方面可变的情况下,很难预先选择使用哪一种,也很难使用这些方法中的任何一种来实现所需的机械特性。

相关推荐
听风南巷1 小时前
机器人全身控制WBC理论及零空间原理解析(数学原理解析版)
人工智能·数学建模·机器人
com_4sapi5 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
心无旁骛~13 小时前
MotionTrans: 从人类VR数据学习机器人操作的运动级迁移
学习·机器人·vr
可爱的蜗牛牛16 小时前
灵猴机器人操作
机器人
机器觉醒时代19 小时前
解锁人形机器人灵巧操作智能—— 视触觉传感器或许是关键钥匙
机器人·人形机器人·灵巧手·视触觉传感器
ZPC82101 天前
FPGA 部署ONNX
人工智能·python·算法·机器人
拓端研究室1 天前
2025人形机器人产业链全景分析报告:核心技术与市场趋势|附130+份报告PDF、数据、可视化模板汇总下载
机器人·pdf
CV炼丹术2 天前
AAAI 2026|港科大等提出ReconVLA:利用视觉重构引导,刷新机器人操作精度!(含代码)
论文阅读·计算机视觉·重构·机器人·aaai 2026
机器人行业研究员2 天前
人形机器人走猫步?关节力传感器成就小鹏IRON?
人工智能·机器学习·机器人·人机交互·六维力传感器·关节力传感器