深度学习之基于YoloV5的目标检测和双目测距系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

双目测距系统利用两个相机的图像来计算目标到相机的距离。通过对左右相机图像进行立体匹配,可以获得目标的三维坐标信息。深度学习在双目测距中的应用,例如使用卷积神经网络(CNN)进行立体匹配,提高了测距的准确性和稳定性。

二、功能

环境:Python3.8.5、torch1.8.1、OpenCV4.5、Pycharm

简介:深度学习之基于YoloV5的目标检测和双目测距系统(UI界面),可实现图片,视频,摄像头的检测和测距

三、系统

四. 总结

基于YoloV5的目标检测和双目测距系统的结合,使得在复杂场景中实现目标检测和距离测量变得更加可行。这个系统在自动驾驶、智能监控和机器人领域等方面有着广泛的应用前景,为实现更智能、更安全的系统提供了强有力的支持。

相关推荐
Dev7z6 小时前
服装厂废料(边角料)YOLO格式分类检测数据集
yolo·服装厂废料·边角料
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
黑客思维者8 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
北山小恐龙9 小时前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer
汗流浃背了吧,老弟!9 小时前
为什么RAG在多轮对话中可能表现不佳?
人工智能·深度学习
糖葫芦君10 小时前
RQ-VAE(残差量化-变分自编码器)
人工智能·深度学习
yj_sharing10 小时前
动手学深度学习softmax回归的笔记
笔记·深度学习·回归