DEC 深度编码聚类函数

2. 辅助目标函数

要使用输入 (bt, groups, embed_dim) 计算 DEC 模型的目标分布,关键部分是使用软分配 q ,其形状为 (bt, groups, max_cluster) 。这里, max_cluster 是您要定位的集群数量。当您沿该维度执行聚类时,需要跨 groups 维度计算目标分布。

The process is:其过程是:

  1. 对软分配进行平方 ( q ):这会放大高概率分配并抑制较低概率分配。

  2. 对 groups 维度求和:您对 groups 维度(张量中的索引 1)上的这些平方概率求和,因为您想要捕获每个组在所有集群中的分布批次中的项目。

  3. 归一化:然后对求和值进行归一化,以确保它们形成正确的概率分布。

目标分布计算如下所示:

python 复制代码
def target_distribution(q):
    # Square the probabilities and sum across the 'groups' dimension
    weight = q ** 2 / q.sum(1, keepdim=True)

    # Normalize across the 'max_cluster' dimension
    return (weight / weight.sum(2, keepdim=True))

在这个函数中:

  • q.sum(1, keepdim=True) 对 groups 维度上的概率平方求和,得到形状 (bt, 1, max_cluster) 的张量。
  • weight / weight.sum(2, keepdim=True) 然后在 max_cluster 维度(张量中的索引 2)对这些概率进行归一化,确保每个簇的概率总和为 1。这会产生相同形状的张量如 q ( (bt, groups, max_cluster) )。
  • 目标分布的计算符合数据结构和 DEC 算法的要求。
相关推荐
天天爱吃肉821814 小时前
交叉表格与卡方检验:新能源汽车研发测试中的分类变量关联性分析实战
人工智能·python·嵌入式硬件·机器学习·分类·数据挖掘·汽车
沉淅尘14 小时前
Agent Skills: 如何为大语言模型构建可复用技能
人工智能·ai·语言模型
啊阿狸不会拉杆14 小时前
《数字图像处理》第 1 章 绪论
图像处理·人工智能·算法·计算机视觉·数字图像处理
Loo国昌14 小时前
【LangChain1.0】第二篇 快速上手实战
网络·人工智能·后端·算法·microsoft·语言模型
BHXDML14 小时前
第二章:决策树与集成算法
算法·决策树·机器学习
无忧智库14 小时前
一网统飞:城市级低空空域精细化管理与服务平台建设方案深度解析(WORD)
大数据·网络·人工智能
张彦峰ZYF14 小时前
Java+Python双语言开发AI工具全景分析与选型指南
java·人工智能·python
Java后端的Ai之路14 小时前
【AI大模型开发】-基于FAISS的语义搜索系统(实战)
人工智能·faiss·向量数据库
张3蜂14 小时前
YOLOv8:下一代实时目标检测的全面解析
人工智能·yolo·目标检测
Java后端的Ai之路14 小时前
【AI大模型开发】-基于向量数据库的PDF智能问答系统(实战)
人工智能·pdf·向量数据库·智能问答系统