DEC 深度编码聚类函数

2. 辅助目标函数

要使用输入 (bt, groups, embed_dim) 计算 DEC 模型的目标分布,关键部分是使用软分配 q ,其形状为 (bt, groups, max_cluster) 。这里, max_cluster 是您要定位的集群数量。当您沿该维度执行聚类时,需要跨 groups 维度计算目标分布。

The process is:其过程是:

  1. 对软分配进行平方 ( q ):这会放大高概率分配并抑制较低概率分配。

  2. 对 groups 维度求和:您对 groups 维度(张量中的索引 1)上的这些平方概率求和,因为您想要捕获每个组在所有集群中的分布批次中的项目。

  3. 归一化:然后对求和值进行归一化,以确保它们形成正确的概率分布。

目标分布计算如下所示:

python 复制代码
def target_distribution(q):
    # Square the probabilities and sum across the 'groups' dimension
    weight = q ** 2 / q.sum(1, keepdim=True)

    # Normalize across the 'max_cluster' dimension
    return (weight / weight.sum(2, keepdim=True))

在这个函数中:

  • q.sum(1, keepdim=True) 对 groups 维度上的概率平方求和,得到形状 (bt, 1, max_cluster) 的张量。
  • weight / weight.sum(2, keepdim=True) 然后在 max_cluster 维度(张量中的索引 2)对这些概率进行归一化,确保每个簇的概率总和为 1。这会产生相同形状的张量如 q ( (bt, groups, max_cluster) )。
  • 目标分布的计算符合数据结构和 DEC 算法的要求。
相关推荐
_Li.2 分钟前
机器学习-非线性分类器 ANN
人工智能·机器学习
薛定e的猫咪5 分钟前
覆盖文献到写作全流程!GPT-Academic 多模型学术助手安装与使用指南
人工智能·gpt·github
喜欢吃豆5 分钟前
下一代 AI 销售陪练系统的架构蓝图与核心技术挑战深度研究报告
人工智能·架构·大模型·多模态·ai销售陪练
攻城狮-frank11 分钟前
【机器学习】直观理解DPO与PPO:大模型优化的两种核心策略
人工智能·机器学习
Aevget12 分钟前
界面控件Telerik UI for Blazor 2025 Q3新版亮点 - 进一步提升AI集成功能
人工智能·ui·界面控件·blazor·telerik
lingzhilab16 分钟前
零知IDE——基于零知ESP32S3部署AI 小智,轻量化智能交互终端
ide·人工智能
Chase_______20 分钟前
AI 提效指南:快速生成中文海报
人工智能
CHrisFC21 分钟前
汽车零配件检测实验室LIMS系统应用实践
大数据·人工智能·汽车
黑客思维者23 分钟前
机器学习009:监督学习【回归算法】(岭回归)-- 给模型一个“清醒”的约束
学习·机器学习·回归·监督学习·岭回归
智航GIS24 分钟前
ArcGIS大师之路500技---037普通克里金VS泛克里金
人工智能·算法·arcgis