DEC 深度编码聚类函数

2. 辅助目标函数

要使用输入 (bt, groups, embed_dim) 计算 DEC 模型的目标分布,关键部分是使用软分配 q ,其形状为 (bt, groups, max_cluster) 。这里, max_cluster 是您要定位的集群数量。当您沿该维度执行聚类时,需要跨 groups 维度计算目标分布。

The process is:其过程是:

  1. 对软分配进行平方 ( q ):这会放大高概率分配并抑制较低概率分配。

  2. 对 groups 维度求和:您对 groups 维度(张量中的索引 1)上的这些平方概率求和,因为您想要捕获每个组在所有集群中的分布批次中的项目。

  3. 归一化:然后对求和值进行归一化,以确保它们形成正确的概率分布。

目标分布计算如下所示:

python 复制代码
def target_distribution(q):
    # Square the probabilities and sum across the 'groups' dimension
    weight = q ** 2 / q.sum(1, keepdim=True)

    # Normalize across the 'max_cluster' dimension
    return (weight / weight.sum(2, keepdim=True))

在这个函数中:

  • q.sum(1, keepdim=True) 对 groups 维度上的概率平方求和,得到形状 (bt, 1, max_cluster) 的张量。
  • weight / weight.sum(2, keepdim=True) 然后在 max_cluster 维度(张量中的索引 2)对这些概率进行归一化,确保每个簇的概率总和为 1。这会产生相同形状的张量如 q ( (bt, groups, max_cluster) )。
  • 目标分布的计算符合数据结构和 DEC 算法的要求。
相关推荐
政安晨32 分钟前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信9 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235869 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活