DEC 深度编码聚类函数

2. 辅助目标函数

要使用输入 (bt, groups, embed_dim) 计算 DEC 模型的目标分布,关键部分是使用软分配 q ,其形状为 (bt, groups, max_cluster) 。这里, max_cluster 是您要定位的集群数量。当您沿该维度执行聚类时,需要跨 groups 维度计算目标分布。

The process is:其过程是:

  1. 对软分配进行平方 ( q ):这会放大高概率分配并抑制较低概率分配。

  2. 对 groups 维度求和:您对 groups 维度(张量中的索引 1)上的这些平方概率求和,因为您想要捕获每个组在所有集群中的分布批次中的项目。

  3. 归一化:然后对求和值进行归一化,以确保它们形成正确的概率分布。

目标分布计算如下所示:

python 复制代码
def target_distribution(q):
    # Square the probabilities and sum across the 'groups' dimension
    weight = q ** 2 / q.sum(1, keepdim=True)

    # Normalize across the 'max_cluster' dimension
    return (weight / weight.sum(2, keepdim=True))

在这个函数中:

  • q.sum(1, keepdim=True) 对 groups 维度上的概率平方求和,得到形状 (bt, 1, max_cluster) 的张量。
  • weight / weight.sum(2, keepdim=True) 然后在 max_cluster 维度(张量中的索引 2)对这些概率进行归一化,确保每个簇的概率总和为 1。这会产生相同形状的张量如 q ( (bt, groups, max_cluster) )。
  • 目标分布的计算符合数据结构和 DEC 算法的要求。
相关推荐
康康的AI博客38 分钟前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱40 分钟前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb143 分钟前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako44 分钟前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜1 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
不大姐姐AI智能体2 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全2 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
Deepoch2 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
2501_940198693 小时前
从“数据孤岛”到“智慧医脑”:实战 MCP 协议安全接入 HIS 系统,构建医疗级 AI 辅助诊断合规中台
人工智能·安全·asp.net