卡尔曼家族从零解剖-(07) 高斯分布积分为1,高斯分布线性变换依旧为高斯分布,两高斯函数乘积仍为高斯。

讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882

文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证

郑重声明:该系列博客为本人 ( W e n h a i Z h u ) 独家私有 , 禁止转载与抄袭 , 举报有谢 ! \color{red}郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,举报有谢! 郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,举报有谢!

一、 前言

该篇博客,主要是对前面知识点进行扫盲,因为有太多的疑惑还没有得到解答,若直接略过直接展开后面的内容进行讲解,就没有办法达到个人编写该系列博客目的,本人是希望彻头彻尾弄明白卡尔曼滤波,及其分支。哪怕掘地三尺,刨根问底也再所不辞。在这之前,个人觉得需要把上篇博客拓展的内容,重述一遍。因为其对卡尔曼滤波的应用确实比较重要:

( 1 ) : \color{red} (1): (1):从状态轴 x x x 来看,通常都是离散的。但是对于每个状态处理时,若有观测 y y y 参与,则通常会涉及到连续处理。 仅供参考,结论: \color{red} 仅供参考,结论: 仅供参考,结论: 卡尔曼滤波即包含了离散,也融入了连续。

( 2 ) : \color{red} (2): (2): 卡尔曼滤波并不需要每次迭代都进行观测,可以以一定频率进行观测更新。其主要与观测数据精度相关,精度越高,允许间隔观测的间隔时长越大。且每次观测,可以观测多个数据。

( 3 ) : \color{red} (3): (3):卡尔曼滤波递推公式虽然是线性的,但是这并不意味着其只能应用于线性变换的场景,其也适用于一些复杂的非线性变换场景,需要观测频率较高。

当然,这篇博客有这篇博客的重点,上面仅仅是记录一下重点而已,下面三个问题就是该篇博客需要解答的:

( 1 ) : \color{blue} (1): (1):高斯分布分布负无穷到正无穷的积分为什么是1?
( 2 ) : \color{blue} (2): (2): 高斯分布经过线性变换为什么还是高斯分布?
( 3 ) : \color{blue} (3): (3): 两个高斯分布函数的乘积为什么依旧是高斯分布?

相关推荐
点云SLAM2 天前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
点云SLAM3 天前
凸优化(Convex Optimization) 理论(2)
机器人·slam·最小二乘法·数值优化·凸优化·拉格朗日-牛顿法·二次规划(qp)
WWZZ20254 天前
SLAM进阶——数据集
人工智能·计算机视觉·机器人·大模型·slam·具身智能
WWZZ20255 天前
SLAM进阶——特征提取
人工智能·大模型·slam·orb·具身智能·特征提取
Sereinc.Y8 天前
【移动机器人运动规划(ROS)】03_ROS话题-服务-动作
c++·动态规划·ros·slam
点云SLAM9 天前
Truncated Least Squares(TLS 截断最小二乘)算法原理
算法·slam·位姿估计·数值优化·点云配准·非凸全局优化·截断最小二乘法
点云SLAM10 天前
点云配准算法之- GICP算法点云配准概率模型推导和最大似然求解(MLE)
算法·机器人·slam·点云配准·最大似然估计·点云数据处理·gicp算法
WWZZ202512 天前
快速上手大模型:实践(Grounded-SAM2与Depth Anything V2)
大模型·sam·slam·多模态·具身智能·dino·grounded-sam2
点云SLAM13 天前
SLAM文献之-Embedding Manifold Structures into Kalman Filters(3)
计算机视觉·机器人·slam·fast-lio·卡尔曼滤波算法·导航系统·imu系统导航
某林21214 天前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam