卡尔曼家族从零解剖-(07) 高斯分布积分为1,高斯分布线性变换依旧为高斯分布,两高斯函数乘积仍为高斯。

讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882

文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证

郑重声明:该系列博客为本人 ( W e n h a i Z h u ) 独家私有 , 禁止转载与抄袭 , 举报有谢 ! \color{red}郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,举报有谢! 郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,举报有谢!

一、 前言

该篇博客,主要是对前面知识点进行扫盲,因为有太多的疑惑还没有得到解答,若直接略过直接展开后面的内容进行讲解,就没有办法达到个人编写该系列博客目的,本人是希望彻头彻尾弄明白卡尔曼滤波,及其分支。哪怕掘地三尺,刨根问底也再所不辞。在这之前,个人觉得需要把上篇博客拓展的内容,重述一遍。因为其对卡尔曼滤波的应用确实比较重要:

( 1 ) : \color{red} (1): (1):从状态轴 x x x 来看,通常都是离散的。但是对于每个状态处理时,若有观测 y y y 参与,则通常会涉及到连续处理。 仅供参考,结论: \color{red} 仅供参考,结论: 仅供参考,结论: 卡尔曼滤波即包含了离散,也融入了连续。

( 2 ) : \color{red} (2): (2): 卡尔曼滤波并不需要每次迭代都进行观测,可以以一定频率进行观测更新。其主要与观测数据精度相关,精度越高,允许间隔观测的间隔时长越大。且每次观测,可以观测多个数据。

( 3 ) : \color{red} (3): (3):卡尔曼滤波递推公式虽然是线性的,但是这并不意味着其只能应用于线性变换的场景,其也适用于一些复杂的非线性变换场景,需要观测频率较高。

当然,这篇博客有这篇博客的重点,上面仅仅是记录一下重点而已,下面三个问题就是该篇博客需要解答的:

( 1 ) : \color{blue} (1): (1):高斯分布分布负无穷到正无穷的积分为什么是1?
( 2 ) : \color{blue} (2): (2): 高斯分布经过线性变换为什么还是高斯分布?
( 3 ) : \color{blue} (3): (3): 两个高斯分布函数的乘积为什么依旧是高斯分布?

相关推荐
WWZZ20253 天前
ORB_SLAM2原理及代码解析:单应矩阵H、基础矩阵F求解
线性代数·算法·计算机视觉·机器人·slam·基础矩阵·单应矩阵
元让_vincent3 天前
论文Review SLAM R3LIVE | ICRA2022 港大MARS | 可以生成Mesh的激光视觉惯性SLAM
3d·机器人·图形渲染·slam·建图
WWZZ20253 天前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
放羊郎7 天前
SLAM算法分类对比
人工智能·算法·分类·数据挖掘·slam·视觉·激光
极客代码8 天前
第五篇:后端优化——位姿图的灵魂--从图优化到滑动窗口的联合状态估计
python·深度学习·计算机视觉·视觉里程计·slam·回环检测·地图构建
点云SLAM12 天前
GTSAM 中自定义因子(Custom Factor)的详解和实战示例
算法·机器人·slam·后端优化·gtsam·gtsam自定义因子·因子图
杀生丸学AI12 天前
【无标题】SceneSplat:基于视觉-语言预训练的3DGS场景理解
3d·aigc·slam·语义分割·三维重建·视觉大模型·空间智能
点云SLAM1 个月前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
deepwater_zone1 个月前
SLAM(同步定位与建图)
slam
点云SLAM1 个月前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值