微积分在神经网络中的本质

calculus

在一个神经网络中我们通常将每一层的输出结果表示为: a [ l ] a^{[l]} a[l]

为了方便记录,将神经网络第一层记为:

[ 1 ] [1] [1]

对应的计算记录为为:
a [ l ] : 第 l 层 a [ j ] : 第 j 个神经元 a^{[l]}:\textcolor{red}{第l层}\\ a_{[j]}:\textcolor{green}{第j个神经元}\\ a[l]:第l层a[j]:第j个神经元

代价函数为:

其中y为实际值,

而对于 d C 0 d w {d{C_0}\over dw} dwdC0是求斜率,或者具体的解释是 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响:

根据链式法则:
具体计算过程:

所以 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响与:真实值与计算值的偏差、激活函数 σ \sigma σ,上一层的输出值有关

如果理解了上述的内容,其他的代价函数 ∇ C \nabla C ∇C就只是换偏导对象即可:

比如,如果要计算 d C 0 d b {d{C_0}\over db} dbdC0,只需要替换一项即可:

同理,应用在BP中可以计算 w j k L ; 一条线的权值的影响 w^{L}_{jk}\textcolor{red}{;一条线的权值的影响} wjkL;一条线的权值的影响(其中jk分别代表 L − 1 L-1 L−1和 L L L层中的不同点):

也可以计算 a k L − 1 ; 前一层的输出值的影响 a^{L-1}_{k}\textcolor{red}{;前一层的输出值的影响} akL−1;前一层的输出值的影响:

相关推荐
点云SLAM23 分钟前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
笔触狂放1 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH221 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
FL16238631292 小时前
汽车表面划痕刮伤检测数据集VOC+YOLO格式1221张1类别
深度学习·yolo·汽车
亲持红叶2 小时前
什么是集成学习
人工智能·机器学习
种花生的图图3 小时前
《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记
人工智能·笔记·深度学习·学习·机器学习
QQ_7781329743 小时前
Python从0到100(八十五):神经网络与迁移学习在猫狗分类中的应用
机器学习·迁移学习
让我试试哈4 小时前
与机器学习相关的概率论重要概念的介绍和说明
人工智能·机器学习·概率论·强化学习
金融OG4 小时前
99.17 金融难点通俗解释:归母净利润
大数据·数据库·python·机器学习·金融
Francek Chen5 小时前
【深度学习基础】多层感知机 | 数值稳定性和模型初始化
人工智能·pytorch·深度学习·神经网络·参数初始化·梯度消失和爆炸