微积分在神经网络中的本质

calculus

在一个神经网络中我们通常将每一层的输出结果表示为: a [ l ] a^{[l]} a[l]

为了方便记录,将神经网络第一层记为:

[ 1 ] [1] [1]

对应的计算记录为为:
a [ l ] : 第 l 层 a [ j ] : 第 j 个神经元 a^{[l]}:\textcolor{red}{第l层}\\ a_{[j]}:\textcolor{green}{第j个神经元}\\ a[l]:第l层a[j]:第j个神经元

代价函数为:

其中y为实际值,

而对于 d C 0 d w {d{C_0}\over dw} dwdC0是求斜率,或者具体的解释是 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响:

根据链式法则:
具体计算过程:

所以 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响与:真实值与计算值的偏差、激活函数 σ \sigma σ,上一层的输出值有关

如果理解了上述的内容,其他的代价函数 ∇ C \nabla C ∇C就只是换偏导对象即可:

比如,如果要计算 d C 0 d b {d{C_0}\over db} dbdC0,只需要替换一项即可:

同理,应用在BP中可以计算 w j k L ; 一条线的权值的影响 w^{L}_{jk}\textcolor{red}{;一条线的权值的影响} wjkL;一条线的权值的影响(其中jk分别代表 L − 1 L-1 L−1和 L L L层中的不同点):

也可以计算 a k L − 1 ; 前一层的输出值的影响 a^{L-1}_{k}\textcolor{red}{;前一层的输出值的影响} akL−1;前一层的输出值的影响:

相关推荐
深度学习实战训练营1 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
sniper_fandc10 小时前
深度学习基础—循环神经网络的梯度消失与解决
人工智能·rnn·深度学习
weixin_5182850510 小时前
深度学习笔记10-多分类
人工智能·笔记·深度学习
Java Fans10 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
慕卿扬11 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
阿_旭11 小时前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai
YRr YRr12 小时前
深度学习:Cross-attention详解
人工智能·深度学习
阿_旭12 小时前
基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·目标检测·yolo11