微积分在神经网络中的本质

calculus

在一个神经网络中我们通常将每一层的输出结果表示为: a [ l ] a^{[l]} a[l]

为了方便记录,将神经网络第一层记为:

1 \] \[1\] \[1

对应的计算记录为为:
a [ l ] : 第 l 层 a [ j ] : 第 j 个神经元 a^{[l]}:\textcolor{red}{第l层}\\ a_{[j]}:\textcolor{green}{第j个神经元}\\ a[l]:第l层a[j]:第j个神经元

代价函数为:

其中y为实际值,

而对于 d C 0 d w {d{C_0}\over dw} dwdC0是求斜率,或者具体的解释是 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响:

根据链式法则:
具体计算过程:

所以 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响与:真实值与计算值的偏差、激活函数 σ \sigma σ,上一层的输出值有关

如果理解了上述的内容,其他的代价函数 ∇ C \nabla C ∇C就只是换偏导对象即可:

比如,如果要计算 d C 0 d b {d{C_0}\over db} dbdC0,只需要替换一项即可:

同理,应用在BP中可以计算 w j k L ; 一条线的权值的影响 w^{L}_{jk}\textcolor{red}{;一条线的权值的影响} wjkL;一条线的权值的影响(其中jk分别代表 L − 1 L-1 L−1和 L L L层中的不同点):

也可以计算 a k L − 1 ; 前一层的输出值的影响 a^{L-1}_{k}\textcolor{red}{;前一层的输出值的影响} akL−1;前一层的输出值的影响:

相关推荐
2401_828890642 分钟前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
Zzz 小生2 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
码农小韩4 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
冰西瓜6004 小时前
深度学习的数学原理(八)—— 过拟合与正则化
人工智能·深度学习
Christo34 小时前
windows系统配置openclaw
人工智能·机器学习
小李独爱秋4 小时前
机器学习与深度学习实验项目3 卷积神经网络实现图片分类
人工智能·深度学习·机器学习·分类·cnn·mindspore·模式识别
陈天伟教授5 小时前
人工智能应用- 搜索引擎:04. 网页重要性评估
人工智能·神经网络·搜索引擎·语言模型·自然语言处理
audyxiao0015 小时前
AI一周重要会议和活动概览(2.16-2.22)
人工智能·机器学习·一周会议与活动
Purple Coder6 小时前
神经网络与深度学习
人工智能·深度学习·神经网络
龙山云仓6 小时前
No156:AI中国故事-对话司马迁——史家绝唱与AI记忆:时间叙事与因果之链
大数据·开发语言·人工智能·python·机器学习