微积分在神经网络中的本质

calculus

在一个神经网络中我们通常将每一层的输出结果表示为: a [ l ] a^{[l]} a[l]

为了方便记录,将神经网络第一层记为:

1 \] \[1\] \[1

对应的计算记录为为:
a [ l ] : 第 l 层 a [ j ] : 第 j 个神经元 a^{[l]}:\textcolor{red}{第l层}\\ a_{[j]}:\textcolor{green}{第j个神经元}\\ a[l]:第l层a[j]:第j个神经元

代价函数为:

其中y为实际值,

而对于 d C 0 d w {d{C_0}\over dw} dwdC0是求斜率,或者具体的解释是 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响:

根据链式法则:
具体计算过程:

所以 w \textcolor{green}{w} w的数值变动对 C 0 \textcolor{red}{C_0} C0的影响与:真实值与计算值的偏差、激活函数 σ \sigma σ,上一层的输出值有关

如果理解了上述的内容,其他的代价函数 ∇ C \nabla C ∇C就只是换偏导对象即可:

比如,如果要计算 d C 0 d b {d{C_0}\over db} dbdC0,只需要替换一项即可:

同理,应用在BP中可以计算 w j k L ; 一条线的权值的影响 w^{L}_{jk}\textcolor{red}{;一条线的权值的影响} wjkL;一条线的权值的影响(其中jk分别代表 L − 1 L-1 L−1和 L L L层中的不同点):

也可以计算 a k L − 1 ; 前一层的输出值的影响 a^{L-1}_{k}\textcolor{red}{;前一层的输出值的影响} akL−1;前一层的输出值的影响:

相关推荐
Small___ming4 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace4 小时前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简4 小时前
机器学习-回归分析概述
人工智能·机器学习
Godspeed Zhao5 小时前
自动驾驶中的传感器技术24.2——Camera(17)
人工智能·机器学习·自动驾驶
pen-ai5 小时前
【数据工程】19. 从 DataOps 到可扩展机器学习:让数据与模型协同进化
人工智能·机器学习
Blossom.1185 小时前
把AI“编”进草垫:1KB决策树让宠物垫自己报「如厕记录」
java·人工智能·python·算法·决策树·机器学习·宠物
rengang666 小时前
03-深度学习与机器学习的对比:分析深度学习与传统机器学习的异同
人工智能·深度学习·机器学习
咕咚-萌西6 小时前
DeepSeek-OCR
人工智能·深度学习·ocr
Godspeed Zhao6 小时前
自动驾驶中的传感器技术74——Navigation(11)
人工智能·机器学习·自动驾驶
Godspeed Zhao6 小时前
自动驾驶中的传感器技术75——Navigation(12)
人工智能·机器学习·自动驾驶