2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(matlab 部分代码)

对于1-4问针对的是附录1 中的数据

复制代码
clc;
close all;
clear;
% 图像文件夹路径
folder_path = 'E:/新建文件夹/yatai/Attachment/Attachment 1/';
% 图像文件列表
image_files = dir(fullfile(folder_path, '*.jpg')); % 假设所有图片都是jpg格式

% 解析文件名中的数字,并转换为数值类型
numbers = cellfun(@(x) sscanf(x, '%d.jpg'), {image_files.name});


% 根据解析出的数字对文件列表进行排序
[~, sorted_idx] = sort(numbers);
image_files = image_files(sorted_idx);
% 存储每张图片苹果数量的数组
apple_counts = zeros(length(image_files), 1);

1,需要对原始的数据预操作,进行数据增强增强

复制代码
% 应用Retinex算法
    sigma = 150; % 高斯滤波器的标准差,可以调整
    enhanced_img = singleScaleRetinex(img, sigma);

2.转换色彩空间 进行直方图均值化

复制代码
 % 转换到YCbCr色彩空间进行直方图均衡化
img_ycbcr = rgb2ycbcr(enhanced_img);
Y_channel = img_ycbcr(:,:,1); % Y通道
img_ycbcr(:,:,1) = histeq(Y_channel); % 对Y通道进行直方图均衡化

3.LAb色彩空间

复制代码
% 将处理后的图像转换回RGB色彩空间
    img_eq = ycbcr2rgb(img_ycbcr);
    
    % 转换到LAB色彩空间
    img_lab = rgb2lab(img);
    % 分别获取L*, a*, b*通道
    L_channel = img_lab(:,:,1);  % L* 亮度通道
    a_channel = img_lab(:,:,2);  % a* 通道,从绿色到红色
    b_channel = img_lab(:,:,3);  % b* 通道,从蓝色到黄色

4.k-means聚类

复制代码
% 使用k-means算法在a_channel进行颜色聚类
    numOfClusters = 2; % 你想要的聚类数量
    [cluster_idx, cluster_center] = kmeans(a_channel_reshape, numOfClusters, 'Distance', 'sqEuclidean', 'Replicates', 3);
    
    % 将聚类索引重塑回图像的大小
    clustered_img = reshape(cluster_idx, rows, cols);
    
    clustered_img_color = label2rgb(clustered_img);

更多参考资料见下方:

​​​​​​​建模忠哥

基于1-4问生成的附录2 中的训练集标签用于后续yolov5对苹果的分割检测

相关推荐
dying_man1 小时前
LeetCode--42.接雨水
算法·leetcode
我爱一条柴ya1 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉03071 小时前
深度学习概述
人工智能·深度学习
19891 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星1 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-20251 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
vortex51 小时前
算法设计与分析 知识总结
算法
艾莉丝努力练剑2 小时前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
ZZZS05162 小时前
stack栈练习
c++·笔记·学习·算法·动态规划
hans汉斯2 小时前
【人工智能与机器人研究】基于力传感器坐标系预标定的重力补偿算法
人工智能·算法·机器人·信号处理·深度神经网络