为什么计算样本标准差时,除以 N-1 而不是 N

标准差 是度量数据集离散度的一个重要指标,但是,本篇讨论的不是标准差 的作用和意义,

而是标准差计算中的一个细节问题。

实际情况下,一般会接触到两种标准差:总体标准差样本标准差,其中样本标准差是最常用的。

1. 总体标准差

总体标准差 的计算公式: <math xmlns="http://www.w3.org/1998/Math/MathML"> σ = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2} </math>σ=N1∑i=1N(xi−μ)2

其中, <math xmlns="http://www.w3.org/1998/Math/MathML"> N N </math>N是总的数据个数, <math xmlns="http://www.w3.org/1998/Math/MathML"> x i x_i </math>xi表示每个数据,
<math xmlns="http://www.w3.org/1998/Math/MathML"> μ \mu </math>μ是所有数据的平均值,即: <math xmlns="http://www.w3.org/1998/Math/MathML"> μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^N x_i </math>μ=N1∑i=1Nxi

从公式来看,总体标准差很好理解,目的就是度量数据集中的数据偏离平均值的情况。

2. 样本标准差

再来看样本标准差 公式: <math xmlns="http://www.w3.org/1998/Math/MathML"> s = 1 N − 1 ∑ i = 1 N ( x i − x ˉ ) 2 s = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2} </math>s=N−11∑i=1N(xi−xˉ)2

其中, <math xmlns="http://www.w3.org/1998/Math/MathML"> N N </math>N是样本集的数据个数, <math xmlns="http://www.w3.org/1998/Math/MathML"> x i x_i </math>xi表示每个样本数据,
<math xmlns="http://www.w3.org/1998/Math/MathML"> x ˉ \bar{x} </math>xˉ是样本数据的平均值,即: <math xmlns="http://www.w3.org/1998/Math/MathML"> x ˉ = 1 N ∑ i = 1 N x i \bar{x} = \frac{1}{N} \sum_{i=1}^N x_i </math>xˉ=N1∑i=1Nxi

从公式可以看出,样本标准差 计算时,用的 <math xmlns="http://www.w3.org/1998/Math/MathML"> 1 N − 1 \frac{1}{N-1} </math>N−11,而不是 <math xmlns="http://www.w3.org/1998/Math/MathML"> 1 N \frac{1}{N } </math>N1。

3. 为什么除以 (N-1)

为了区分总体标准差中 的数据个数,下面用 <math xmlns="http://www.w3.org/1998/Math/MathML"> N a l l N_{all} </math>Nall表示总体标准差 中的数据个数,

用 <math xmlns="http://www.w3.org/1998/Math/MathML"> N s a m p l e s N_{samples} </math>Nsamples表示样本标准差中的数据个数。

实际的数据分析中,常用的分析指标是样本标准差总体标准差 用的很少。

因为,总体数据量往往很庞大,而且新的数据不断产生,导致所谓的总体数据 也不断变化。

比如,对于民意调查结果,新闻内容,天气数据,股市交易等等,都是抽样做分析。

既然是抽样分析,那么,计算样本标准差时,是得不到整体数据的平均值 <math xmlns="http://www.w3.org/1998/Math/MathML"> μ \mu </math>μ的。

所以在样本标准差的计算公式中,我们用的是样本的平均值 <math xmlns="http://www.w3.org/1998/Math/MathML"> x ˉ \bar{x} </math>xˉ,而不是整体的平均值 <math xmlns="http://www.w3.org/1998/Math/MathML"> μ \mu </math>μ。

直观上来看,样本的平均值 <math xmlns="http://www.w3.org/1998/Math/MathML"> x ˉ \bar{x} </math>xˉ会要比整体的平均值 <math xmlns="http://www.w3.org/1998/Math/MathML"> μ \mu </math>μ更接近样本数据集中的数据,

所以,理论上 <math xmlns="http://www.w3.org/1998/Math/MathML"> ∑ i = 1 N s a m p l e s ( x i − x ˉ ) 2 \sum_{i=1}^{N_{samples}} (x_i - \bar{x})^2 </math>∑i=1Nsamples(xi−xˉ)2要比 <math xmlns="http://www.w3.org/1998/Math/MathML"> ∑ i = 1 N s a m p l e s ( x i − μ ) 2 \sum_{i=1}^{N_{samples}} (x_i - \mu)^2 </math>∑i=1Nsamples(xi−μ)2的值小一些。

因此, <math xmlns="http://www.w3.org/1998/Math/MathML"> 1 N s a m p l e s ∑ i = 1 N s a m p l e s ( x i − x ˉ ) 2 \frac{1}{N_{samples}}\sum_{i=1}^{N_{samples}} (x_i - \bar{x})^2 </math>Nsamples1∑i=1Nsamples(xi−xˉ)2也比 <math xmlns="http://www.w3.org/1998/Math/MathML"> 1 N s a m p l e s ∑ i = 1 N s a m p l e s ( x i − μ ) 2 \frac{1}{N_{samples}}\sum_{i=1}^{N_{samples}} (x_i - \mu)^2 </math>Nsamples1∑i=1Nsamples(xi−μ)2的值要小。

为了调整这个偏差,让样本标准差 能够更接近总体的标准差
样本标准差 公式中除以 <math xmlns="http://www.w3.org/1998/Math/MathML"> N s a m p l e s − 1 N_{samples}-1 </math>Nsamples−1而不是 <math xmlns="http://www.w3.org/1998/Math/MathML"> N s a m p l e s N_{samples} </math>Nsamples,

相当于调高了样本标准差的值,使之更接近**总体的标准差 **。

4. 补充

通过( <math xmlns="http://www.w3.org/1998/Math/MathML"> N s a m p l e s − 1 N_{samples}-1 </math>Nsamples−1)调节样本标准差 的过程也被称作贝塞尔校正Bessel's correction),

它的数学推导过程可以参考:贝塞尔校正

相关推荐
平谷一勺8 小时前
数据清洗-缺失值的处理
python·数据分析
末世灯光9 小时前
时间序列入门第一问:它和普通数据有什么不一样?(附 3 类典型案例)
人工智能·python·机器学习·时序数据
Gitpchy10 小时前
Day 20 奇异值SVD分解
python·机器学习
weixin_4296302611 小时前
实验二-决策树-葡萄酒
算法·决策树·机器学习
gddkxc11 小时前
AI CRM中的数据分析:悟空AI CRM如何帮助企业优化运营
人工智能·信息可视化·数据分析
吃饭睡觉发paper12 小时前
Learning Depth Estimation for Transparent and Mirror Surfaces
人工智能·机器学习·计算机视觉
派可数据BI可视化13 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
Aaplloo14 小时前
机器学习作业七
人工智能·机器学习
Cathy Bryant15 小时前
矩阵乘以向量?向量乘以向量?
笔记·神经网络·考研·机器学习·数学建模
小白狮ww16 小时前
LiveCC 首个视频解说大模型开源,比赛视频也能轻松拿捏!
人工智能·深度学习·机器学习