扩散模型(1)代码

python 复制代码
import torch
python 复制代码
import torchvision
python 复制代码
from torch import nn
python 复制代码
from torch.utils.data import DataLoader
python 复制代码
from diffusers import DDPMScheduler, UNet2DModel
python 复制代码
from matplotlib import pyplot as plt
python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
复制代码
Using device: cuda
python 复制代码
dataset = torchvision.datasets.MNIST(root="mnist/",train=True,download=True,transform=torchvision.transforms. ToTensor())
python 复制代码
train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
x,y =next(iter(train_dataloader))
python 复制代码
print('Input shape:', x.shape)
复制代码
Input shape: torch.Size([8, 1, 28, 28])
python 复制代码
print('Lable shape:', y.shape)
复制代码
Lable shape: torch.Size([8])
python 复制代码
plt.imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d31128f7c0>

扩散模型之退化过程 控制内容损坏程度,引入一个参数控制输入的"噪声量"

python 复制代码
def corrupt(x, amount):
    # 根据amount为输入x加入噪声
    # 如果amount=0则返回输入,不做任何更改,如果amount=1那么就返回一个纯粹的噪声
    noise = torch.rand_like(x)
    amount = amount.view(-1, 1, 1, 1)
    # noisy_like = (1-amount)*x+amount*noise
    return x*(1-amount)+amount*noise
python 复制代码
fig, axs = plt.subplots(2,1,figsize=(12,5))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
# 加入噪声
amount = torch.linspace(0,1,x.shape[0])
noise_x = corrupt(x,amount)
axs[1].set_title('Corrupted data (----amount increases ---->)')
axs[1].imshow(torchvision.utils.make_grid(noise_x)[0], cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3112ef400>
python 复制代码
class BasicUnet(nn.Module):
    def __init__(self, in_channels=1, out_channels=1):
        super().__init__()
        self.down_layers = torch.nn.ModuleList(
            [
             nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 64, kernel_size=5, padding=2),
            ]
        )
        # 下行路径
        self.up_layers = torch.nn.ModuleList(
            [

             nn.Conv2d(64, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
            ]
        )
        # 上行路径
        self.act = nn.SiLU()# 激活函数
        self.downscale = nn.MaxPool2d(2)
        self.upscale = nn.Upsample(scale_factor=2)

    def forward(self, x):
        h = []
        for i, l in enumerate(self.down_layers):
            x = self.act(l(x)) # 通过运算层与激活函数
            if i < 2: # 选择下行路径的前两层
                h.append(x)  # 供残差连接使用的数据
                x = self.downscale(x) # 选择下采样适配下一层的输入

        for i, l in enumerate(self.up_layers):
            if i > 0:
                x = self.upscale(x)
                x += h.pop()
            x = self.act(l(x))

        return  x
python 复制代码
net = BasicUnet()
python 复制代码
x = torch.rand(8, 1, 28, 28)
python 复制代码
net(x).shape
复制代码
torch.Size([8, 1, 28, 28])
python 复制代码
sum([p.numel() for p in net.parameters()])
复制代码
309057

diffusion model有什么用-也就是说给定一个带噪声的noise_x的输入,扩散模型的输出其对原始输入x的最佳预测。

需要通过均方误差对预测值与真实值进行比较

python 复制代码
# 流程:1、获取数据 2、添加随机噪声 3、数据输入模型 4、预测和初始图像进行比较 计算损失更新模型的参数
batch_size = 128
python 复制代码
train_dataloader = DataLoader(dataset,batch_size=batch_size, shuffle=True)
n_epochs = 3
python 复制代码
net = BasicUnet()
net.to(device)
# 损失函数
loss_fn = nn.MSELoss()
#优化器
opt = torch.optim.Adam(net.parameters(),lr=1e-3)
losses = []
python 复制代码
for epoch in range(n_epochs):
    for x,y in train_dataloader:
        x = x.to(device)
        noise_amount  = torch.rand(x.shape[0]).to(device)
        noisy_x = corrupt(x,noise_amount) # 创建带噪声的NOISY_X
        # 得到模型的预测结果
        pred = net(noisy_x)

        loss = loss_fn(pred, x)

        opt.zero_grad()
        loss.backward()
        opt.step()
        # 储存损失,供后期查看
        losses.append(loss.item())

    avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader)
    print(f'Finished epoch {epoch}. Average loss for this epoch:{avg_loss:05f}')
    plt.plot(losses)
    plt.ylim(0,0.1);
复制代码
Finished epoch 0. Average loss for this epoch:0.027834
Finished epoch 1. Average loss for this epoch:0.021065
Finished epoch 2. Average loss for this epoch:0.019122
python 复制代码
# 可视化模型在"带噪"输入上的表现
# 初始数据
x, y = next(iter(train_dataloader))
x = x[:8]
# 在(0-1)之间取噪声量
amount = torch.linspace(0,1, x.shape[0])
noised_x = corrupt(x, amount)
# 模型预测结果
with torch.no_grad():
    preds = net(noised_x.to(device)).detach().cpu()

# 绘图
fig,axs = plt.subplots(3, 1, figsize=(12,7))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0].clip(0, 1), cmap='Greys')

axs[1].set_title('Corrupted data')
axs[1].imshow(torchvision.utils.make_grid(noised_x)[0].clip(0, 1), cmap='Greys')

axs[2].set_title('prediction data')
axs[2].imshow(torchvision.utils.make_grid(preds)[0].clip(0, 1), cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3113997c0>

采样过程

模型在高噪声量下的预测不好该怎么办呢?

从完全随机噪声开始,检测预测效果,然后朝着预测效果移动一部分,比如20%,可能新的预测效果就比上一侧的预测效果好一点,那么么就可以继续向前移动。

python 复制代码
# 采样策略 把采样过程拆解为5步,每次只前进一步
n_steps = 5
x = torch.rand(8,1,28,28).to(device)
step_history = [x.detach().cpu()]
pred_output_history = []
for i in range(n_steps):
    with torch.no_grad():
        pred = net(x) # 预测去噪后图像
        pred_output_history.append(pred.detach().cpu()) # 保存模型

        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
        step_history.append(x.detach().cpu()) # 记录每一次移动


fig, axs = plt.subplots(n_steps, 2, figsize=(9,4), sharex=True)
axs[0,0].set_title('x (model input)')
axs[0,1].set_title('model prediction')

for i in range(n_steps):
    axs[i,0].imshow(torchvision.utils.make_grid(step_history[i])[0].clip(0,1), cmap='Greys')
    axs[i,1].imshow(torchvision.utils.make_grid(pred_output_history[i])[0].clip(0,1), cmap='Greys')
python 复制代码
n_steps = 20
x = torch.rand(64,1,28,28).to(device)

for i in range(n_steps):
    noise_amount = torch.ones((x.shape[0],)).to(device) * (1-(i/n_steps))# 噪声从高到低
    with torch.no_grad():
        pred = net(x)
        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
fig, ax = plt.subplots(1, 1, figsize=(12,12))
ax.imshow(torchvision.utils.make_grid(x.detach().cpu(),nrow=8)[0].clip(0,1), cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3811f7130>

退化过程

在每个时间步都为输入图像添加少量噪声的退化过程。

如果在某个时间步给定 x t − 1 x_{t-1} xt−1,就可以得到一个噪声稍微增强的 x t x_{t} xt:

( x t ∣ x t − 1 ) = N ( x t ; 1 − β i x t − 1 , β t I ) q ( x 1 ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) \left(x_{t} \mid x_{t-1}\right)=\mathcal{N}\left(x_{t} ; \sqrt{1-\beta_{i}} x_{t-1}, \beta_{t} I\right) q\left(x_{1} \mid x_{0}\right)=\prod_{t=1}^{T} q\left(x_{t} \mid x_{t-1}\right) (xt∣xt−1)=N(xt;1−βi xt−1,βtI)q(x1∣x0)=t=1∏Tq(xt∣xt−1)

你可以这样理解,取 x t − 1 x_{t-1} xt−1,。给它一个系数 1 − β t \sqrt{1-\beta_{t}} 1−βt ,然后将其与一个带有系数 β t \beta_{t} βt的噪声相加。其中, β \beta β是我们根据调度器为每个时划设定的参数,用于决定在每个时间步添加的噪声量。我们并不想通过把这个推演重复 500 次来得到,而是希望利用另一个公式,根据给出的 x 0 x_{0} x0计算得到任意时刻 t t t的 x t x_{t} xt:
q ( x t ∣ x 0 ) = N ( x t ; α i x 0 , ( 1 − α ˉ t ) I ) ; 其中 α ˉ t = ∏ T α i , α i = 1 − β i q\left(x_{t} \mid x_{0}\right)=\mathcal{N}\left(x_{t} ; \sqrt{\alpha_{i}} x_{0},\left(1-\bar{\alpha}{t}\right) \boldsymbol{I}\right) ; \text { 其中 } \bar{\alpha}{t}=\prod^{T} \alpha_{i}, \alpha_{i}=1-\beta_{i} q(xt∣x0)=N(xt;αi x0,(1−αˉt)I); 其中 αˉt=∏Tαi,αi=1−βi

相关推荐
weixin_贾33 分钟前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲43 分钟前
函数的定义与使用(python)
开发语言·python
船长@Quant1 小时前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建
多巴胺与内啡肽.1 小时前
深度学习--自然语言处理统计语言与神经语言模型
深度学习·语言模型·自然语言处理
偶尔微微一笑2 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼2 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
Sherlock Ma2 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
船长@Quant3 小时前
文档构建:Sphinx全面使用指南 — 基础篇
python·markdown·sphinx·文档构建
喵手3 小时前
从 Java 到 Kotlin:在现有项目中迁移的最佳实践!
java·python·kotlin
liuweidong08023 小时前
【Pandas】pandas DataFrame rsub
开发语言·python·pandas