扩散模型(1)代码

python 复制代码
import torch
python 复制代码
import torchvision
python 复制代码
from torch import nn
python 复制代码
from torch.utils.data import DataLoader
python 复制代码
from diffusers import DDPMScheduler, UNet2DModel
python 复制代码
from matplotlib import pyplot as plt
python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')
复制代码
Using device: cuda
python 复制代码
dataset = torchvision.datasets.MNIST(root="mnist/",train=True,download=True,transform=torchvision.transforms. ToTensor())
python 复制代码
train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
x,y =next(iter(train_dataloader))
python 复制代码
print('Input shape:', x.shape)
复制代码
Input shape: torch.Size([8, 1, 28, 28])
python 复制代码
print('Lable shape:', y.shape)
复制代码
Lable shape: torch.Size([8])
python 复制代码
plt.imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d31128f7c0>

扩散模型之退化过程 控制内容损坏程度,引入一个参数控制输入的"噪声量"

python 复制代码
def corrupt(x, amount):
    # 根据amount为输入x加入噪声
    # 如果amount=0则返回输入,不做任何更改,如果amount=1那么就返回一个纯粹的噪声
    noise = torch.rand_like(x)
    amount = amount.view(-1, 1, 1, 1)
    # noisy_like = (1-amount)*x+amount*noise
    return x*(1-amount)+amount*noise
python 复制代码
fig, axs = plt.subplots(2,1,figsize=(12,5))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0], cmap='Greys')
# 加入噪声
amount = torch.linspace(0,1,x.shape[0])
noise_x = corrupt(x,amount)
axs[1].set_title('Corrupted data (----amount increases ---->)')
axs[1].imshow(torchvision.utils.make_grid(noise_x)[0], cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3112ef400>
python 复制代码
class BasicUnet(nn.Module):
    def __init__(self, in_channels=1, out_channels=1):
        super().__init__()
        self.down_layers = torch.nn.ModuleList(
            [
             nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 64, kernel_size=5, padding=2),
            ]
        )
        # 下行路径
        self.up_layers = torch.nn.ModuleList(
            [

             nn.Conv2d(64, 64, kernel_size=5, padding=2),
             nn.Conv2d(64, 32, kernel_size=5, padding=2),
             nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
            ]
        )
        # 上行路径
        self.act = nn.SiLU()# 激活函数
        self.downscale = nn.MaxPool2d(2)
        self.upscale = nn.Upsample(scale_factor=2)

    def forward(self, x):
        h = []
        for i, l in enumerate(self.down_layers):
            x = self.act(l(x)) # 通过运算层与激活函数
            if i < 2: # 选择下行路径的前两层
                h.append(x)  # 供残差连接使用的数据
                x = self.downscale(x) # 选择下采样适配下一层的输入

        for i, l in enumerate(self.up_layers):
            if i > 0:
                x = self.upscale(x)
                x += h.pop()
            x = self.act(l(x))

        return  x
python 复制代码
net = BasicUnet()
python 复制代码
x = torch.rand(8, 1, 28, 28)
python 复制代码
net(x).shape
复制代码
torch.Size([8, 1, 28, 28])
python 复制代码
sum([p.numel() for p in net.parameters()])
复制代码
309057

diffusion model有什么用-也就是说给定一个带噪声的noise_x的输入,扩散模型的输出其对原始输入x的最佳预测。

需要通过均方误差对预测值与真实值进行比较

python 复制代码
# 流程:1、获取数据 2、添加随机噪声 3、数据输入模型 4、预测和初始图像进行比较 计算损失更新模型的参数
batch_size = 128
python 复制代码
train_dataloader = DataLoader(dataset,batch_size=batch_size, shuffle=True)
n_epochs = 3
python 复制代码
net = BasicUnet()
net.to(device)
# 损失函数
loss_fn = nn.MSELoss()
#优化器
opt = torch.optim.Adam(net.parameters(),lr=1e-3)
losses = []
python 复制代码
for epoch in range(n_epochs):
    for x,y in train_dataloader:
        x = x.to(device)
        noise_amount  = torch.rand(x.shape[0]).to(device)
        noisy_x = corrupt(x,noise_amount) # 创建带噪声的NOISY_X
        # 得到模型的预测结果
        pred = net(noisy_x)

        loss = loss_fn(pred, x)

        opt.zero_grad()
        loss.backward()
        opt.step()
        # 储存损失,供后期查看
        losses.append(loss.item())

    avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader)
    print(f'Finished epoch {epoch}. Average loss for this epoch:{avg_loss:05f}')
    plt.plot(losses)
    plt.ylim(0,0.1);
复制代码
Finished epoch 0. Average loss for this epoch:0.027834
Finished epoch 1. Average loss for this epoch:0.021065
Finished epoch 2. Average loss for this epoch:0.019122
python 复制代码
# 可视化模型在"带噪"输入上的表现
# 初始数据
x, y = next(iter(train_dataloader))
x = x[:8]
# 在(0-1)之间取噪声量
amount = torch.linspace(0,1, x.shape[0])
noised_x = corrupt(x, amount)
# 模型预测结果
with torch.no_grad():
    preds = net(noised_x.to(device)).detach().cpu()

# 绘图
fig,axs = plt.subplots(3, 1, figsize=(12,7))
axs[0].set_title('Input data')
axs[0].imshow(torchvision.utils.make_grid(x)[0].clip(0, 1), cmap='Greys')

axs[1].set_title('Corrupted data')
axs[1].imshow(torchvision.utils.make_grid(noised_x)[0].clip(0, 1), cmap='Greys')

axs[2].set_title('prediction data')
axs[2].imshow(torchvision.utils.make_grid(preds)[0].clip(0, 1), cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3113997c0>

采样过程

模型在高噪声量下的预测不好该怎么办呢?

从完全随机噪声开始,检测预测效果,然后朝着预测效果移动一部分,比如20%,可能新的预测效果就比上一侧的预测效果好一点,那么么就可以继续向前移动。

python 复制代码
# 采样策略 把采样过程拆解为5步,每次只前进一步
n_steps = 5
x = torch.rand(8,1,28,28).to(device)
step_history = [x.detach().cpu()]
pred_output_history = []
for i in range(n_steps):
    with torch.no_grad():
        pred = net(x) # 预测去噪后图像
        pred_output_history.append(pred.detach().cpu()) # 保存模型

        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
        step_history.append(x.detach().cpu()) # 记录每一次移动


fig, axs = plt.subplots(n_steps, 2, figsize=(9,4), sharex=True)
axs[0,0].set_title('x (model input)')
axs[0,1].set_title('model prediction')

for i in range(n_steps):
    axs[i,0].imshow(torchvision.utils.make_grid(step_history[i])[0].clip(0,1), cmap='Greys')
    axs[i,1].imshow(torchvision.utils.make_grid(pred_output_history[i])[0].clip(0,1), cmap='Greys')
python 复制代码
n_steps = 20
x = torch.rand(64,1,28,28).to(device)

for i in range(n_steps):
    noise_amount = torch.ones((x.shape[0],)).to(device) * (1-(i/n_steps))# 噪声从高到低
    with torch.no_grad():
        pred = net(x)
        mix_factor = 1/(n_steps - i) # 设置朝着预测方向移动多少
        x = x*(1-mix_factor)+pred*mix_factor # 移动过程
fig, ax = plt.subplots(1, 1, figsize=(12,12))
ax.imshow(torchvision.utils.make_grid(x.detach().cpu(),nrow=8)[0].clip(0,1), cmap='Greys')
复制代码
<matplotlib.image.AxesImage at 0x1d3811f7130>

退化过程

在每个时间步都为输入图像添加少量噪声的退化过程。

如果在某个时间步给定 x t − 1 x_{t-1} xt−1,就可以得到一个噪声稍微增强的 x t x_{t} xt:

( x t ∣ x t − 1 ) = N ( x t ; 1 − β i x t − 1 , β t I ) q ( x 1 ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) \left(x_{t} \mid x_{t-1}\right)=\mathcal{N}\left(x_{t} ; \sqrt{1-\beta_{i}} x_{t-1}, \beta_{t} I\right) q\left(x_{1} \mid x_{0}\right)=\prod_{t=1}^{T} q\left(x_{t} \mid x_{t-1}\right) (xt∣xt−1)=N(xt;1−βi xt−1,βtI)q(x1∣x0)=t=1∏Tq(xt∣xt−1)

你可以这样理解,取 x t − 1 x_{t-1} xt−1,。给它一个系数 1 − β t \sqrt{1-\beta_{t}} 1−βt ,然后将其与一个带有系数 β t \beta_{t} βt的噪声相加。其中, β \beta β是我们根据调度器为每个时划设定的参数,用于决定在每个时间步添加的噪声量。我们并不想通过把这个推演重复 500 次来得到,而是希望利用另一个公式,根据给出的 x 0 x_{0} x0计算得到任意时刻 t t t的 x t x_{t} xt:
q ( x t ∣ x 0 ) = N ( x t ; α i x 0 , ( 1 − α ˉ t ) I ) ; 其中 α ˉ t = ∏ T α i , α i = 1 − β i q\left(x_{t} \mid x_{0}\right)=\mathcal{N}\left(x_{t} ; \sqrt{\alpha_{i}} x_{0},\left(1-\bar{\alpha}{t}\right) \boldsymbol{I}\right) ; \text { 其中 } \bar{\alpha}{t}=\prod^{T} \alpha_{i}, \alpha_{i}=1-\beta_{i} q(xt∣x0)=N(xt;αi x0,(1−αˉt)I); 其中 αˉt=∏Tαi,αi=1−βi

相关推荐
老胖闲聊3 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之3 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
lyaihao4 小时前
使用python实现奔跑的线条效果
python·绘图
ai大师5 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
小小爬虾5 小时前
关于datetime获取时间的问题
python
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉