机器学习:DBSCAN算法(效果比K-means好)

基本概念

核心对象:以点为圆心半径为r的圆,如果圈里面的样本点大于给定的阈值(minPts),那么这个点就叫做核心点

直接密度可达:点p在q为圆心的圆内

密度可达:

p1与p2直接密度可达,p2与p3直接密度可达,所以p1与p3被称为密度可达

边界点:

以p1为核心点的圈含p2,p2自己为核心点也有对应圈,并且圈内有点p3,同样p3也有以p3为核心点的圈,并且有点p4,这说明点p1,p2,p3是可以发展下去的点(我认为可以理解成以之前圈住点为圆心画圈不断圈住新的点)

但是p4就不行了,因为以p4为核心点的圈内没有其他样本点或者说样本点的个数少于规定的阈值MinPts,没有继续"发展"下去

工作流程

算法

需要输入的数据

参数D:输入数据集

参数:指定半径

MinPts:密度阈值

如何选择参数,基本上都是不断尝试

优势和劣势

可视化展示

Visualizing DBSCAN Clustering

Gaussian Mixture

如下图所示,调大半径epsilon之后,离群点就变小了

如果想用DESCAN算法找离群点,可以考虑将半径调小

Smiley Face

Packed Circles

但对于这种密集区域此时,DBSCAN分类就不如K-means

半径小了,就出现分类很多的情况;半径大了,就出现分类只有一两个的情况,还不如直接K-means直接给定分类的类别

相关推荐
嘉陵妹妹1 小时前
深度优先算法学习
学习·算法·深度优先
GalaxyPokemon2 小时前
LeetCode - 53. 最大子数组和
算法·leetcode·职场和发展
hn小菜鸡2 小时前
LeetCode 1356.根据数字二进制下1的数目排序
数据结构·算法·leetcode
zhuiQiuMX2 小时前
分享今天做的力扣SQL题
sql·算法·leetcode
music&movie3 小时前
算法工程师认知水平要求总结
人工智能·算法
黑鹿0224 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
laocui14 小时前
Σ∆ 数字滤波
人工智能·算法
yzx9910134 小时前
Linux 系统中的算法技巧与性能优化
linux·算法·性能优化
全栈凯哥5 小时前
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
java·算法·leetcode·链表
全栈凯哥5 小时前
Java详解LeetCode 热题 100(27):LeetCode 21. 合并两个有序链表(Merge Two Sorted Lists)详解
java·算法·leetcode·链表