机器学习:DBSCAN算法(效果比K-means好)

基本概念

核心对象:以点为圆心半径为r的圆,如果圈里面的样本点大于给定的阈值(minPts),那么这个点就叫做核心点

直接密度可达:点p在q为圆心的圆内

密度可达:

p1与p2直接密度可达,p2与p3直接密度可达,所以p1与p3被称为密度可达

边界点:

以p1为核心点的圈含p2,p2自己为核心点也有对应圈,并且圈内有点p3,同样p3也有以p3为核心点的圈,并且有点p4,这说明点p1,p2,p3是可以发展下去的点(我认为可以理解成以之前圈住点为圆心画圈不断圈住新的点)

但是p4就不行了,因为以p4为核心点的圈内没有其他样本点或者说样本点的个数少于规定的阈值MinPts,没有继续"发展"下去

工作流程

算法

需要输入的数据

参数D:输入数据集

参数:指定半径

MinPts:密度阈值

如何选择参数,基本上都是不断尝试

优势和劣势

可视化展示

Visualizing DBSCAN Clustering

Gaussian Mixture

如下图所示,调大半径epsilon之后,离群点就变小了

如果想用DESCAN算法找离群点,可以考虑将半径调小

Smiley Face

Packed Circles

但对于这种密集区域此时,DBSCAN分类就不如K-means

半径小了,就出现分类很多的情况;半径大了,就出现分类只有一两个的情况,还不如直接K-means直接给定分类的类别

相关推荐
小白狮ww18 分钟前
国产超强开源大语言模型 DeepSeek-R1-70B 一键部署教程
人工智能·深度学习·机器学习·语言模型·自然语言处理·开源·deepseek
陈浩源同学19 分钟前
学习 TypeScript 栈和队列数据结构
前端·算法
Sodas(填坑中....)44 分钟前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
maxruan1 小时前
自动驾驶之BEV概述
人工智能·机器学习·自动驾驶·bev
夏末秋也凉1 小时前
力扣-回溯-491 非递减子序列
数据结构·算法·leetcode
penguin_bark1 小时前
三、动规_子数组系列
算法·leetcode
kyle~1 小时前
thread---基本使用和常见错误
开发语言·c++·算法
曲奇是块小饼干_2 小时前
leetcode刷题记录(一百零八)——322. 零钱兑换
java·算法·leetcode·职场和发展
小wanga2 小时前
【leetcode】滑动窗口
算法·leetcode·职场和发展
少年芒2 小时前
Leetcode 490 迷宫
android·算法·leetcode