【算法】离散化 与 哈希 之间的区别

离散化(Discretization)和哈希(Hashing)是两种不同的数据处理技术,用于处理不同类型的问题。


1. 离散化(Discretization):

离散化 是将一组连续的数据映射到有限个离散值的过程。主要应用在处理连续数据的时候,比如将一组实数映射到一组整数或者有限的值。离散化的目的是降低数据的复杂度,使其更易于处理。

常见的离散化方法包括:

  • 分桶法(Bucketing): 将数据划分为若干个区间,每个区间代表一个离散值。
  • 排序后编号法: 将数据排序后,用排名(即对应下标)作为新的离散值。
  • 分位数法: 将数据按照分位数(如四分位数,即把所有数据分为四份,其中第二四分位数就是中位数)划分。

2. 哈希(Hashing):

哈希是一种将任意长度的数据映射为固定长度的值的过程。它使用一个哈希函数,将输入映射到一个散列值,通常是一个固定大小的整数。哈希函数应该是高效的,并且要尽可能减少冲突(多个不同的输入映射到相同的散列值)的发生。

常见的哈希方法包括:

  • 除法散列法: 用输入值除以一个质数,取余数作为哈希值。
  • 乘法散列法: 用输入值乘以一个常数,取其小数部分或整数部分作为哈希值。
  • 链地址法: 将哈希冲突的元素保存在同一散列值处的链表中。

区别:

  1. 应用领域不同: 离散化主要用于处理连续数据,将其映射为离散值哈希主要用于数据查找和索引的高效性,通过哈希函数将数据映射为一个固定大小的值,使得查找操作更快速。

  2. 数据映射方式不同: 离散化是有限个值的映射,通常是按照一定规则划分的;哈希是通过哈希函数的计算,将任意大小的数据映射为一个固定大小的值。

  3. 处理的数据类型不同: 离散化主要用于处理连续的数据,例如时间序列;哈希主要用于处理任意类型的数据,包括字符串、对象等。

在算法竞赛或者实际应用中,离散化和哈希常常用于优化算法的效率,但它们的具体应用场景和目的略有不同。

相关推荐
专业抄代码选手15 分钟前
【Leetcode】1930. 长度为 3 的不同回文子序列
javascript·算法·面试
[J] 一坚1 小时前
深入浅出理解冒泡、插入排序和归并、快速排序递归调用过程
c语言·数据结构·算法·排序算法
czlczl200209251 小时前
算法:二叉搜索树的最近公共祖先
算法
司铭鸿1 小时前
祖先关系的数学重构:从家谱到算法的思维跃迁
开发语言·数据结构·人工智能·算法·重构·c#·哈希算法
SoleMotive.2 小时前
redis实现漏桶算法--https://blog.csdn.net/m0_74908430/article/details/155076710
redis·算法·junit
-森屿安年-2 小时前
LeetCode 283. 移动零
开发语言·c++·算法·leetcode
北京地铁1号线2 小时前
数据结构:堆
java·数据结构·算法
散峰而望2 小时前
C++数组(一)(算法竞赛)
c语言·开发语言·c++·算法·github
自然常数e3 小时前
深入理解指针(1)
c语言·算法·visual studio
WWZZ20253 小时前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能