知识图谱最简单的demo实现——基于pyvis

1、前言

我们在上篇文章中介绍了知识图谱的简单实现,最后使用neo4j进行了展示,对于有些情况我们可能并不想为了查看知识图的结果再去安装一个软件去实现,那么我们能不能直接将三元组画出来呢/

接下来我们就介绍一个可视化的工具pyvis,来实现知识图谱的可视化

2、简单介绍pyvis

2.1 安装pyvis

安装其实很简单,直接pip就可以

python 复制代码
pip install pyvis

2.2 创建节点

python 复制代码
from pyvis.network import Network
net = Network(notebook=True)

net.add_node(1, label="张三")
net.add_node(2, label="李四")

net.nodes
#查看节点
[{'color': '#97c2fc', 'id': 1, 'label': '张三', 'shape': 'dot'},
 {'color': '#97c2fc', 'id': 2, 'label': '李四', 'shape': 'dot'}]

展示

python 复制代码
net.show("basic.html")

2.3 创建边

python 复制代码
net.add_edge(1,2, label="好朋友", color="blue", width=2)

这里的节点是可以拖动的,跟neo4j非常相似

3、知识图谱构建

实体和三元组还是来自于上一节的内容

3.1 创建节点

python 复制代码
col = ["orange","blue","red","green","purple"]

def pyvis_node_create(net,ner_list_Nh,ner_list_Ni,ner_list_Ns,predicate):
    if len(ner_list_Nh)!=0:
        for i in range(len(ner_list_Nh)):
            #graph.create(Node('人名', name=ner_list_Nh[i]))
            net.add_node(i, label=ner_list_Nh[i],title = "人名", color=col[0])


    if len(ner_list_Ni)!=0:
        for i in range(len(ner_list_Ni)):
            #graph.create(Node('机构名', name=ner_list_Ni[i]))
            net.add_node( label=ner_list_Ni[i],title = "机构名", color=col[1])

    if len(ner_list_Ns)!=0:
        for i in range(len(ner_list_Ns)):
            #graph.create(Node('地名', name=ner_list_Ns[i]))
            net.add_node(100+i, label=ner_list_Ns[i],title = "地名", color=col[2])
            

    if len(predicate)!=0:
        for i in range(len(predicate)):
            #graph.create(Node('标签', name=predicate[i]))
            net.add_node(1000+i, label=predicate[i],title = "标签", color=col[3])

代码只需要将之前在neo4j创建节点的稍微改下就行

3.2 创建边

我们首先要创建一个节点名称和节点ID对应的字典

pyvis创建边必须是id-->id的,所以我们需要根据实体名称得到其在当前的节点ID,我们在进行创建边

python 复制代码
def create_node_id_dic(net):
    dic_node_id={}
    for i in net.node_ids:
        #print(i)
        dic_node_id[str(net.node_map[i]["label"])] = i
    return  dic_node_id

得到的字典如下

python 复制代码
{'苏轼': 0,
 '黄庭坚': 1,
 '常州': 100,
 '宋朝的著名文学家': 1000,
 '他的好朋友': 1001,
 '写词': 1002,
 '写诗': 1003}

创建边

python 复制代码
def pyvis_relationship_create(net,kg_list,node_id_dic):
    for m in range(len(kg_list)):        
        try:
            net.add_edge(node_id_dic[kg_list[m][0]], node_id_dic[kg_list[m][2]], label=kg_list[m][1], color="blue", width=2)

        except AttributeError as e:
            print(e, m)

结果跟在neo4j中是一样的

相关推荐
聆风吟º9 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys9 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56789 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子9 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能9 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448710 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile10 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57710 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥10 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty72510 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai