【算法每日一练]-图论(保姆级教程篇7 最小生成树 ,并查集模板篇)#村村通 #最小生成树

目录

题目:村村通

并查集

题目:最小生成树

kruskal算法

prim算法


先引入问题:

要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信 ,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树

说白了就是将此图连通起来的最小代价。

对于一个有N个点的图,边一定是大于等于N-1条的。图的最小生成树,就是在这些边中选择N-1条出来,连接所有的N个点。这N-1条边的边权之和是所有方案中最小的

有两种算法:prim和kruskal

前者适合稠密图,后者适合稀疏图(不然炸你内存)

要先说并查集才行

题目:村村通

并查集

【并查集思想】:是集合。一个是并操作(建树),一个是查操作(查树)。并操作是将一个集合的树变成另一个集合树的子树。

我们只需要建和原图等价的并查树即可,根本不用建原图

查操作是从该元素开始查找父节点直到找到根节点看看是否相同

1,初始化每个点的父亲为自身

2,并操作:(建边)合并两个集合的树根(祖宗)(查的过程中并路径压缩)

3,查操作:最后查找有几个祖宗即可

cpp 复制代码
#include <bits/stdc++.h>              
using namespace std;
int fa[1000001], n, m, x, y;
int find(int x)
//找到祖先后并修改中间点的fa(路径压缩使更快的查到祖宗,
//其实就是对树进行优化,减少了树的深度,效果是将多代变成一代) 
{
    if(x!=fa[x]) fa[x]=find(fa[x]);
//自己不是祖宗,直接更新成亲爹的祖宗号
//但是如果是dp,那就要先保存原亲爹号,不然你就找不到爹了(路径压缩的代价)
    return fa[x];//返回祖先 
}
void unity(int x, int y)
{
    int f1=find(x);//如果x和y本来就在同一个集合完全 不影响
    int f2=find(y);
    fa[f1]=f2;//合并树根 
}
int main()
{
	while(true)
	{
		int ans=0;
		cin>>n>>m;
		if(n==0) return 0;
	    for(int i=1; i<=n; i++){
	    	fa[i]=i;//先初始化成节点
		}
	    for(int i=1; i<=m; i++){
	    	scanf("%d %d", &x, &y);//合并<x,y>能到的地方
	        unity(x,y);//建边,建树
		}
	    for(int i=1; i<=n; i++){//一共有几个祖宗
	    	if(find(i)==i) ans++;
		}
		printf("%d\n", ans-1);//共需修ans-1条路即可
	}
    return 0;
}

题目:最小生成树

kruskal算法

【kruskal】:贪心的每次取最小权值的边进行合并(只要不构成环),当恰好合并了n-1条边时候就是最小生成树。只要小于就不是,此图也不连通
可以使用并查集来实现合并和不构成环

kruskal甚至不需要建图,但是如果是完全图的话,存边容易MLE,这时候就要prim

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
int f;
struct Edge{ int u,v,w; }e[200005];
int fa[5005],n,m,ans,cnt;

bool cmp(Edge a,Edge b){ return a.w<b.w;}

int find(int x)
{
    if(x!=fa[x]) fa[x]=find(fa[x]);
    return fa[x];//返回祖先 
}

void kruskal()
{
    sort(e+1,e+1+m,cmp);//将边的权值排序
    for(int i=1;i<=m;i++)
    {
        int fu=find(e[i].u), fv=find(e[i].v);
        if(fu==fv) continue;  //若出现两个点已经联通了,则说明这一条边不需要了
        ans+=e[i].w; //将此边权计入答案
        fa[fv]=fu; //合并操作
        if(++cnt==n-1)//如果边数恰好为n-1,则说明最小生成树已经建成
        {
            f=1;break;
        }
    }
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) fa[i]=i;//初始化并查集节点
    for(int i=1;i<=m;i++)
    {
        scanf("%d %d %d",&e[i].u,&e[i].v,&e[i].w);
    }
    kruskal();
    if(f==1)printf("%d",ans);
    else cout<<"orz";//不连通
    return 0;
}

prim算法

【prim算法】:prim算法基于贪心,我们每次总是选出一个离生成树距离最小的点去加入生成树,最后实现最小生成树(不做证明,理解思想即可)

每次都最小生成数和dijkstra思想很像,都是从小图开始,每次都从周围合并一个最小的点然后不断扩大,所以长得也很像,感觉完全一样啊

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int k,n,m,cnt,sum;
int head[5005],dis[5005],vis[5005];
typedef pair <int,int> pii;
struct Edge{ int v,w,next;}e[400005];

void add(int u,int v,int w){e[++k]=(Edge){v,w,head[u]};head[u]=k;}

void prim()
{
	priority_queue <pii,vector<pii>,greater<pii> > q;
	memset(dis,0x3f,sizeof(dis));
    dis[1]=0;//dis是周围点到集合的最小距离
    q.push(make_pair(0,1));
    while(!q.empty()&&cnt<n)//cnt是已经加入的点数
    {
        int d=q.top().first,u=q.top().second;//取出周围最小dis的点
        q.pop();
        if(vis[u]) continue;
        cnt++;
        sum+=d;
        vis[u]=1;//标记此点已经加入
	    for(i=head[u];i;i=e[i].next){
	        int ve=e[i].v,vw=e[i].w;//到集合最小距离就是权值
	        if(vw<dis[ve])//如果变小就更新入队,以便获取最小的点
	            dis[ve]=vw,q.push(make_pair(dis[ve],ve));
	    }
    }
}

int main()
{
	int u,v,w;
    scanf("%d%d",&n,&m);
    for(i=1;i<=m;i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);
        add(v,u,w);
    }
    prim();
    if (cnt==n)printf("%d",sum);
    else printf("orz");//如果小于n说明不连通
}
相关推荐
昂子的博客6 分钟前
基础数据结构——队列(链表实现)
数据结构
咕咕吖8 分钟前
对称二叉树(力扣101)
算法·leetcode·职场和发展
九圣残炎40 分钟前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu1 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!1 小时前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚1 小时前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
ULTRA??1 小时前
C加加中的结构化绑定(解包,折叠展开)
开发语言·c++
凌云行者2 小时前
OpenGL入门005——使用Shader类管理着色器
c++·cmake·opengl
凌云行者2 小时前
OpenGL入门006——着色器在纹理混合中的应用
c++·cmake·opengl
为什么这亚子2 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算