动态规划:多重背包问题-一维滚动数组解法

题目描述

你是一名宇航员,即将前往一个遥远的行星。在这个行星上,有许多不同类型的矿石资源,每种矿石都有不同的重要性和价值。你需要选择哪些矿石带回地球,但你的宇航舱有一定的容量限制。

给定一个宇航舱,最大容量为 C。现在有 N 种不同类型的矿石,每种矿石有一个重量 w[i],一个价值 v[i],以及最多 k[i] 个可用。不同类型的矿石在地球上的市场价值不同。你需要计算如何在不超过宇航舱容量的情况下,最大化你所能获取的总价值。

输入描述

输入共包括四行,第一行包含两个整数 C 和 N,分别表示宇航舱的容量和矿石的种类数量。

接下来的三行,每行包含 N 个正整数。具体如下:

第二行包含 N 个整数,表示 N 种矿石的重量。

第三行包含 N 个整数,表示 N 种矿石的价格。

第四行包含 N 个整数,表示 N 种矿石的可用数量上限。

输出描述

输出一个整数,代表获取的最大价值。

输入示例

10 3

1 3 4

15 20 30

2 3 2

输出示例

90

提示信息

数据范围:

1 <= C <= 10000;

1 <= N <= 10000;

1 <= w[i], v[i], k[i] <= 10000;

思路:动态规划-一维滚动数组

可以转换为0-1背包,关于0-1背包可以看我的博客:动态规划:0-1背包问题-二维数组和一维滚动数组解法。这里就不讲二维数组的解法了,二维数组的写法其实和一维滚动数组是差不多的,虽然物品数增加了,但是可以进行排列,给个例子:

质量 价值 最大数量
1 15 2
3 20 3
4 30 2

我们可以把数量扩写成如下的形式:

质量 价值
1 15
1 15
3 20
3 20
3 20
4 30
4 30

这样就转换为了0-1背包问题。多重背包在0-1背包的基础上加上了一个数量的维度,把它添上去就好了:

cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;
int main(){
    int C, N;
    cin >> C >> N;
    vector<int> weight(N, 0);
    vector<int> value(N, 0);
    vector<int> nums(N, 0);
    for (int i = 0; i < N; ++i)
        cin >> weight[i];
    for (int i = 0; i < N; ++i)
        cin >> value[i];
    for (int i = 0; i < N; ++i)
        cin >> nums[i];
        
    for (int i = 0; i < N; ++i){
        while (nums[i] > 1){
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }
        vector<int> dp(C + 1, 0);
    for (int i = 0; i < weight.size(); ++i){
        for (int j = C; j >= weight[i]; --j){
                dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);            
            }
        }
    }
    cout << dp[C];
    return 0;
}

然而vector的push_back是非常低效的,所以我一开始做出了下面的改进:

cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;
int main(){
    int C, N;
    cin >> C >> N;
    vector<int> weight(N, 0);
    vector<int> value(N, 0);
    vector<int> nums(N, 0);
    for (int i = 0; i < N; ++i)
        cin >> weight[i];
    for (int i = 0; i < N; ++i)
        cin >> value[i];
    for (int i = 0; i < N; ++i)
        cin >> nums[i];
    
    vector<int> dp(C + 1, 0);
    for (int i = 0; i < weight.size(); ++i){
        for (int j = C; j >= weight[i]; --j){
            for (int k = 1; k <= nums[i]; ++k){
            	if (j >= k * weight[i])
                    dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);            
            }
        }
    }
    cout << dp[C];
    return 0;
}

代码还可以继续精简,把if的判断放到for循环里:

cpp 复制代码
#include <iostream>
#include <vector>
using namespace std;
int main(){
    int C, N;
    cin >> C >> N;
    vector<int> weight(N, 0);
    vector<int> value(N, 0);
    vector<int> nums(N, 0);
    for (int i = 0; i < N; ++i)
        cin >> weight[i];
    for (int i = 0; i < N; ++i)
        cin >> value[i];
    for (int i = 0; i < N; ++i)
        cin >> nums[i];
            
    vector<int> dp(C + 1, 0);
    for (int i = 0; i < weight.size(); ++i){
        for (int j = C; j >= weight[i]; --j){
            for (int k = 1; k <= nums[i] && j >= k * weight[i]; ++k){
                    dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);            
            }
        }
    }
    cout << dp[C];
    return 0;
}
相关推荐
青铜发条5 分钟前
【算法】常见校验算法对比
算法·信息与通信·校验
LinHenrY12277 分钟前
初识C语言(数据在内存中的存储)
c语言·开发语言·算法
R-G-B10 分钟前
BM53 缺失的第一个正整数,哈希表,原地哈希(扩展思路)
算法·哈希算法·哈希表·原地哈希
AI科技星12 分钟前
观察者与宇宙:描述如何创造物理实在
数据结构·人工智能·算法·机器学习·重构
发疯幼稚鬼14 分钟前
简单介绍二项队列及其实现
c语言·数据结构·算法
一只乔哇噻18 分钟前
java后端工程师+AI大模型开发进修ing(研一版‖day62)
java·开发语言·算法·语言模型
子一!!19 分钟前
并查集(Union-Find)数据结构
java·数据结构·算法
阿正的梦工坊19 分钟前
R-Zero:从零数据自进化推理大语言模型
人工智能·算法·语言模型·大模型·llm
Evand J19 分钟前
【信号处理课题推荐】小波变化:原理、演进与时频分析应用,MATLAB代码示例
算法·matlab·信号处理·傅里叶分析·傅立叶分析·小波变化
2401_8414956421 分钟前
【LeetCode刷题】轮转数组
数据结构·python·算法·leetcode·数组·双指针·轮转数组