opencv知识库:利用cv2.resize()函数进行图像缩放

引言

numpy知识库:深入理解numpy.resize函数和数组的resize方法中,小编较为详细地探讨了numpy的resize函数背后的机理。从结果来看,numpy.resize函数并不适合对图像进行缩放操作。而opencv中的resize函数虽然和numpy的resize函数同名,但却支持图像的缩放操作。

需求场景

欲对高为384,宽为512的图像进行放大或缩小。

生成初始图像

代码如下:

python 复制代码
import cv2
import numpy as np

# 生成初始图像
img = np.zeros((384, 512), dtype=np.uint8) 
img[172:212, 32:-32] = 255
print(img.shape) # (高,宽) ---> (384, 512)

cv2.imshow('img', img)
cv2.waitKey(0)

将初始图像的【高】放大一倍(384 --> 768)

代码如下:

python 复制代码
import cv2
import numpy as np

# 生成初始图像
img = np.zeros((384, 512), dtype=np.uint8)
img[172:212, 32:-32] = 255
H, W = img.shape # img.shape 分别记录了图像的【高】和【宽】 --> 【高前宽后】
print("before", H, W) # 384 512

# 可行的方案1 ------------ 使用cv2.resize函数的dsize参数指定输出图像的宽高
# dsize的第一个参数指定的是输出图像的【宽】,第二个才是【高】 --> 【宽前高后】
# --> 与img.shape正好相反,使用cv2.resize函数的dsize参数需要特别注意。
img = cv2.resize(img, dsize=(W, H*2)) # 注意dsize参数的使用方式


# 可行的方案2 ------------ 使用cv2.resize函数的fy参数
# 要点1: fy=2表示沿着y轴(高)方向放大一倍;
# 要点2: fx=1虽然没有起到作用,但不可省略;
# 要点3: dsize参数必须设置为None;
img = cv2.resize(img, dsize=None, fx=1, fy=2)) # 沿着高的方向将初始图像放大一倍
# fx = 2, fy = 1 ---> 宽放大一倍,高保持不变
# fx = 0.5, fy = 1 ---> 宽缩小为原来1/2,高保持不变
# fx = 1, fy = 0.5 ---> 高缩小为原来1/2,宽保持不变

# 打印新图像大小
new_H, new_W = img.shape
print("after", new_H, new_W) # 768 512

# 显示图像
cv2.imshow('img', img)
cv2.waitKey(0)

运行结果:

结束语

如果本博文对你有所帮助,可以点个赞/收藏支持一下,如果能够持续关注,小编感激不尽~

小编会坚持创作,持续优化博文质量,以小见大,给读者带来更好的阅读体验~

相关推荐
渡我白衣1 分钟前
无中生有——无监督学习的原理、算法与结构发现
人工智能·深度学习·神经网络·学习·算法·机器学习·语音识别
.小墨迹1 分钟前
apollo中速度规划的s-t图讲解【针对借道超车的问题】
开发语言·数据结构·c++·人工智能·学习
罗马尼亚硬拉2 分钟前
tensile/reference/environment-variables
人工智能·windows·深度学习
J_Xiong01172 分钟前
【Agents篇】08:单智能体应用——任务、创新与生命周期
人工智能·ai agent
蓝海星梦3 分钟前
GRPO 算法演进:2025 年 RL4LLM 领域 40+ 项改进工作全景解析
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习
郝学胜-神的一滴3 分钟前
线性判别分析(LDA)原理详解与实战应用
人工智能·python·程序人生·算法·机器学习·数据挖掘·sklearn
菩提树下的凡夫4 分钟前
DINOv2工业缺陷异常检测算特征提取模型介绍
人工智能·目标检测
小鸡吃米…5 分钟前
机器学习 - 对抗性机器学习
人工智能·python·机器学习
蓝海星梦7 分钟前
GRPO 算法演进——奖励设计篇
论文阅读·人工智能·深度学习·算法·自然语言处理·强化学习
qyr67898 分钟前
废物转化为能源全球市场分析报告
大数据·人工智能·能源·市场分析·市场报告·废物转化为能源·废物能源