二叉树的非递归遍历(详解)


二叉树非递归遍历原理
使用先序遍历的方式完成该二叉树的非递归遍历
通过添加现有项目的方式将原来编写好的栈文件导入项目中


目前项目存在三个文件一个头文件,两个cpp文件:

项目头文件的代码截图:QueueStorage.h
项目头文件的代码:QueueStorage.h

cpp 复制代码
#ifndef LINKSTACK_H
#define LINKSTACK_H
#include <stdio.h>
#include <stdlib.h>


// 链式栈的节点
typedef struct LINKNODE {
	struct LINKNODE* next;
}LinkNode;
// 链式栈
typedef struct LINKSTACK {
	LinkNode head;
	int size;

}LinkStack;

// 初始化函数
LinkStack* Init_LinkStack();
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data);
// 出栈
void Pop_LinkStack(LinkStack* stack);
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack);
// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack);
// 清空栈
void Clear_LinkStack(LinkStack* stack);
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack);
#endif

项目cpp文件代码截图:QueueStorage.cpp该文件主要用于栈功能的实现
栈逻辑文件具体代码:QueueStorage.cpp

cpp 复制代码
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

// 初始化函数
LinkStack* Init_LinkStack() {
    LinkStack* stack = (LinkStack*)malloc(sizeof(LinkStack));
    stack->head.next = NULL;
    stack->size = 0;
    return stack;
};
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data) {
    if (stack == NULL) {
        return;
    }
    if (data == NULL) {
        return;
    }
    // 入栈
    data->next = stack->head.next;
    stack->head.next = data;
    stack->size++;
};
// 出栈
void Pop_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    if (stack->size == 0) {
        return;
    }

    // 第一个有效节点
    LinkNode* pNext = stack->head.next;
    stack->head.next = pNext->next;
    stack->size--;



};
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return NULL;
    }
    if (stack->size == 0) {
        return NULL;
    }
    // 返回栈顶元素
    return stack->head.next;
};

// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return -1;
    }
    return stack->size;
};
// 清空栈
void Clear_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    // 清空栈
    stack->head.next = NULL;
    stack->size = 0;

};
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    free(stack);
};

二叉树cpp文件截图:BinaryTree.cpp

二叉树cpp文件逻辑代码实现先序遍历:BinaryTree.cpp

cpp 复制代码
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

#define MY_FALSE 0
#define MY_TRUE 1


// 二叉树的节点
typedef struct BINARYNODE {
    // 数据
    char ch;
    // 二叉树的左节点
    struct BINARYNODE* lchild;
    // 二叉树的右节点
    struct BINARYNODE* rchild;
}BinaryNode;
//二叉树的非递归遍历
typedef struct BITREESTACKNODE {
    LinkNode* node;
    BinaryNode* root;
    int flag;
}BiTreeStackNode;


// 创建栈中的节点
BiTreeStackNode* CreateBiTreeStackNode(BinaryNode* node, int flag) {
    BiTreeStackNode* newnode = (BiTreeStackNode*)malloc(sizeof(BiTreeStackNode));
    newnode->root = node;
    newnode->flag = flag;
    return newnode;


}

void NonRecursion(BinaryNode* root) {
    // 创建栈
    LinkStack* stack = Init_LinkStack();
    // 将根节点放入栈中
    Push_LinkStack(stack, (LinkNode*)CreateBiTreeStackNode(root, MY_FALSE));
    // 判断栈是否为空
    while (Size_LinkStack(stack) > 0) {
         // 先弹出栈顶元素
        BiTreeStackNode* node = (BiTreeStackNode*)TopLinkStack(stack);
        Pop_LinkStack(stack);
        // 判断弹出的节点是否为空
        if (node->root == NULL) {
            continue;
        }
        if (node->flag == MY_TRUE) {
            printf("%c", node->root->ch);
        }
        else {
            // 当前节点的右节点入栈
            Push_LinkStack(stack,(LinkNode*)CreateBiTreeStackNode(node->root->rchild,MY_FALSE));
            // 当前节点的左节点入栈
            Push_LinkStack(stack, (LinkNode*)CreateBiTreeStackNode(node->root->lchild, MY_FALSE));
            // 当前节点入栈
            node->flag = MY_TRUE;
            Push_LinkStack(stack, (LinkNode*)node);
        }
    }
}
// 二叉树的递归遍历
void Recursion(BinaryNode* root) {
    if (root == NULL) {
        return;
    }
    printf("%c",root->ch);
    // 递归遍历
    Recursion(root->lchild);
    Recursion(root->rchild);

}



void CresteBinaryTree() {
    // 将节点创建出来
    BinaryNode node1 = { 'A',NULL,NULL};
    BinaryNode node2 = { 'B',NULL,NULL };
    BinaryNode node3 = { 'C',NULL,NULL };
    BinaryNode node4 = { 'D',NULL,NULL };
    BinaryNode node5 = { 'E',NULL,NULL };
    BinaryNode node6 = { 'F',NULL,NULL };
    BinaryNode node7 = { 'G',NULL,NULL };
    BinaryNode node8 = { 'H',NULL,NULL };
    // 建立节点之间的关系
    node1.lchild = &node2;
    node1.rchild = &node6;
    node2.rchild = &node3;
    node3.lchild = &node4;
    node3.rchild = &node5;
    node6.rchild = &node7;
    node7.lchild = &node8;
    //二叉树的非递归打印
    NonRecursion(&node1);
    // 二叉树的递归遍历
    printf("\n");
   // Recursion(&node1);
}

int main()
{
    CresteBinaryTree();
    system("pause");
    return 0;
}

项目运行结果展示

相关推荐
陌小呆^O^6 分钟前
Cmakelist.txt之win-c-udp-server
c语言·开发语言·udp
Chris _data15 分钟前
二叉树oj题解析
java·数据结构
დ旧言~27 分钟前
【高阶数据结构】图论
算法·深度优先·广度优先·宽度优先·推荐算法
时光の尘27 分钟前
C语言菜鸟入门·关键字·float以及double的用法
运维·服务器·c语言·开发语言·stm32·单片机·c
张彦峰ZYF32 分钟前
投资策略规划最优决策分析
分布式·算法·金融
-一杯为品-36 分钟前
【51单片机】程序实验5&6.独立按键-矩阵按键
c语言·笔记·学习·51单片机·硬件工程
The_Ticker1 小时前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Lenyiin1 小时前
02.06、回文链表
数据结构·leetcode·链表
爪哇学长1 小时前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法
爱摸鱼的孔乙己1 小时前
【数据结构】链表(leetcode)
c语言·数据结构·c++·链表·csdn