2024美赛数学建模资料---100%获奖资料

很好的教程了 一共二十四章 每一章都是一个模型 并且有matlab编程编码

第一章 线性规划

第二章 整数规划

第三章 非线性规划

第四章 动态规划

第五章 图与网络

第六章 排队论

第七章 对策论

第八章 层次分析法

第九章 插值与拟合

第十章 数据的统计描述和分析

第十一章 方差分析

第十二章 回归分析

第十三章 微分方程建模

第十四章 稳定状态模型

第十五章 常微分方程的解法

第十六章 差分方程模型

第十七章 马氏链模型

第十八章 变分法模型

第十九章 神经网络模型

第二十章 偏微分方程的数值解

第二十一章 目标规划

第二十二章 模糊数学模型

第二十三章 现代优化算法

第二十四章 时间序列模型

第二十五章 存贮论

第二十六章 经济与金融中的优化问题

第二十七章 生产与服务运作管理中的优化问题

第二十八章 灰色系统理论及其应用

第二十九章 多元分析

第三十章 偏最小二乘回归

附录一 Matlab入门

附录二 Matlab在线性代数中的应用

附录三 运筹学的LINGO软件

附录四 判别分析

参考文献

在实际问题中,经常遇到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR),提取自变量组主成分的主成分回归分析(PCR)等方法外,还有近年发展起来的偏最小二乘(PLS)回归方法。 偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。 偏最小二乘回归分析在建模过程中集中了主成分分析,典型相关分析和线性回归分析方法的特点,因此在分析结果中,除了可以提供一个更为合理的回归模型外,还可以同时完成一些类似于主成分分析和典型相关分析的研究内容,提供更丰富、深入的一些信息。

多元分析(multivariate analyses)是多变量的统计分析方法,是数理统计中应用广泛的一个重分支,其内容庞杂,视角独特,方法多样,深受工程技术人员的青睐和广泛使用,并在使用中不断完善和创新。由于变量的相关性,不能简单地把每个变量的结果进行汇总,这是多变量统计分析的基本出发点。

§1 聚类分析

将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,也有关世界空间地域的研究,则形成了地理学。又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。在企业的经营管理中,为了确定其目标市场,首先要进行市场细分。因为无论一个企业多么庞大和成功,它也无法满足整个市场的各种需求。而市场细分,可以帮助企业找到适合自己特色,并使企业具有竞争力的分市场,将其作为自己的重点开发目标。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(clusteranalyses)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。

相似性度量

样本的相似性度量

要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个变量来刻画。如果对于一群有待分类的样本点需用 p个变量描述,则每个样本点可以看成是 pR 空间中的一个点。因此,很自然地想到可以用距离来度量样本点间的相似程度。

客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。

§1 灰色系统概论

客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互联系而构成一个整体,我们称之为系统。按事物内涵的不同,人们已建立了工程技术、社会系统、经济系统等。人们试图对各种系统所外露出的一些特征进行分析,从而弄清楚系统内部的运行机理。从信息的完备性与模型的构建上看,工程技术等系统具有较充足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。这类系统内部特性部分已知的系统称之为灰色系统。一个系统的内部特性全部未知,则称之为黑色系统。 区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确的定量来阐明,因此,物体的运动便是一个白色系统。 当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。某人有一天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。他对此莫名其妙。但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前不久曾被汽车撞伤过。显然,同样对于"狗的惧怕行为",客人因不知内情而面临一个黑箱,而主人则面临一个灰箱。

GitHub - ttxsg/2024MCM-ICM: 2024美赛数学建模资料

相关推荐
2401_8827275715 小时前
BY组态-低代码web可视化组件
前端·后端·物联网·低代码·数学建模·前端框架
smppbzyc19 小时前
2024亚太杯数学建模C题【Development Analyses and Strategies for Pet Industry 】思路详解
数学建模·数学建模竞赛·亚太杯·2024亚太杯数学建模·apmcm亚太杯·2024亚太地区数学建模竞赛·亚太杯c题
热心网友俣先生19 小时前
2024年亚太C题第二版本二问题1求解过程+代码运行以及问题2-4超详细思路分析
数学建模
小何数模19 小时前
24 年第十四届APMCM亚太数模竞赛浅析
数学建模
川川菜鸟1 天前
2024年亚太地区数学建模C题完整思路
数学建模
2023数学建模国赛比赛资料分享1 天前
2024亚太杯国际赛C题宠物预测1234问完整解题思路代码+成品参考文章
人工智能·数学建模·宠物·2024亚太杯国际赛数学建模·2024亚太杯国际赛a题·2024亚太杯国际赛数模abc·2024亚太杯数学建模
subject625Ruben2 天前
随机森林(Random Forest, RF)筛选回归数据(处理异常值)
算法·随机森林·数学建模·回归
数维学长9862 天前
《译文》2024年11月数维杯国际大学生数学建模挑战赛题目
数学建模
2023数学建模国赛比赛资料分享2 天前
2024年第十四届APMCM亚太杯数学建模A题B题C题思路+代码解析汇总
数学建模·2024第十四届亚太杯数模·2024亚太杯数学建模国际上·2024亚太杯数学建模国际赛
张焚雪2 天前
关于图论建模的一份介绍
python·数学建模·图论