【踩坑记录】pytorch 自定义嵌套网络时部分网络输出不变的问题

问题描述

使用如下的自定义的多层嵌套网络进行训练:

python 复制代码
class FC1_bot(nn.Module):
    def __init__(self):
        super(FC1_bot, self).__init__()
        self.embeddings = nn.Sequential(
        	nn.Linear(10, 10)
        )
       
    def forward(self, x):
        emb = self.embeddings(x)
        return emb

    
class FC1_top(nn.Module):
    def __init__(self):
        super(FC1_top, self).__init__()
        self.prediction = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(10, 10)
        )
        
    def forward(self, x):
        logit = self.prediction(x)
        return logit


class FC1(nn.Module):
    def __init__(self, num):
        super(FC1, self).__init__()
        self.num = num

        self.bot = []
        for _ in range(num):
            self.bot.append(FC1_bot())

        self.top = FC1_top()
        
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x = list(x)
        emb = []
        for i in range(self.num):
            emb.append(self.bot[i](x[i]))

        agg_emb = self._aggregate(emb)
        logit = self.top(agg_emb)

        pred = self.softmax(logit)

        return emb, pred
    
    def _aggregate(self, x):
        # Note: x is a list of tensors.
        return torch.cat(x, dim=1)

训练的代码如下:

python 复制代码
def train(self):
	# train entire model
	self.model.train()

	for epoch in range(self.args.epochs):
		...

解决办法

需要把所有用到的模型都变成训练模式,否则只有top模型在被训练。

python 复制代码
def train(self):
	# train entire model
	self.model.train()
	self.model.top.train()
	for i in range(self.args.num):
	    self.model.bot[i].train()

	for epoch in range(self.args.epochs):
		...
相关推荐
老胖闲聊2 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之3 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
lyaihao4 小时前
使用python实现奔跑的线条效果
python·绘图
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
ai大师4 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票