【踩坑记录】pytorch 自定义嵌套网络时部分网络输出不变的问题

问题描述

使用如下的自定义的多层嵌套网络进行训练:

python 复制代码
class FC1_bot(nn.Module):
    def __init__(self):
        super(FC1_bot, self).__init__()
        self.embeddings = nn.Sequential(
        	nn.Linear(10, 10)
        )
       
    def forward(self, x):
        emb = self.embeddings(x)
        return emb

    
class FC1_top(nn.Module):
    def __init__(self):
        super(FC1_top, self).__init__()
        self.prediction = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(10, 10)
        )
        
    def forward(self, x):
        logit = self.prediction(x)
        return logit


class FC1(nn.Module):
    def __init__(self, num):
        super(FC1, self).__init__()
        self.num = num

        self.bot = []
        for _ in range(num):
            self.bot.append(FC1_bot())

        self.top = FC1_top()
        
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x = list(x)
        emb = []
        for i in range(self.num):
            emb.append(self.bot[i](x[i]))

        agg_emb = self._aggregate(emb)
        logit = self.top(agg_emb)

        pred = self.softmax(logit)

        return emb, pred
    
    def _aggregate(self, x):
        # Note: x is a list of tensors.
        return torch.cat(x, dim=1)

训练的代码如下:

python 复制代码
def train(self):
	# train entire model
	self.model.train()

	for epoch in range(self.args.epochs):
		...

解决办法

需要把所有用到的模型都变成训练模式,否则只有top模型在被训练。

python 复制代码
def train(self):
	# train entire model
	self.model.train()
	self.model.top.train()
	for i in range(self.args.num):
	    self.model.bot[i].train()

	for epoch in range(self.args.epochs):
		...
相关推荐
这张生成的图像能检测吗18 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘19 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
DanCheng-studio20 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~21 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
lisw0521 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
独行soc1 天前
2025年渗透测试面试题总结-264(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
2501_941623321 天前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛1 天前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
汤姆yu1 天前
基于python的外卖配送及数据分析系统
开发语言·python·外卖分析