十五 动手学深度学习v2计算机视觉 ——全连接神经网络FCN

文章目录

FCN

全卷积网络先使用卷积神经网络抽取图像特征,然后通过卷积层将通道数变换为类别个数,最后通过转置卷积层将特征图的高和宽变换为输入图像的尺寸。 因此,模型输出与输入图像的高和宽相同,且最终输出通道包含了该空间位置像素的类别预测。

上图的CNN去掉了池化层和全连接层!

1x1卷积层降低维度,减少计算量。

最后输出kx224x224, 通道数就是类别数。

相关推荐
charles_vaez4 分钟前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
YRr YRr26 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆31 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
Shy96041836 分钟前
Bert完形填空
python·深度学习·bert
老艾的AI世界1 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
懒惰才能让科技进步2 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
没有不重的名么2 小时前
门控循环单元GRU
人工智能·深度学习·gru
love_and_hope2 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
Chef_Chen2 小时前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习