Tensorflow1.0 和 Tensorflow2.0之间的区别

一、搭建深度学习模型的区别(背出来!!!)

对于Tensorflow1.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算session.run()

对于Tensorflow 2.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算model()

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

  1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。
    TensorFlow 1.0 默认是静态图,需要手动开启动态图。
  2. tf.keras模块上的区别:Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)。TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码。

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。

TensorFlow 1.0 默认是静态图,需要手动开启动态图。

2. tf.keras模块上的区别

Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。

TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)

TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。

3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码

借鉴:

2.2 tensorflow2官方demo_哔哩哔哩_bilibili

相关推荐
杜子不疼.2 分钟前
计算机视觉热门模型手册:Spring Boot 3.2 自动装配新机制:@AutoConfiguration 使用指南
人工智能·spring boot·计算机视觉
无心水2 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk7 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云7 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10437 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里8 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1788 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京8 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python8 小时前
MongoDB-only方法
python·sql
TGITCIC9 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag