Tensorflow1.0 和 Tensorflow2.0之间的区别

一、搭建深度学习模型的区别(背出来!!!)

对于Tensorflow1.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算session.run()

对于Tensorflow 2.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算model()

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

  1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。
    TensorFlow 1.0 默认是静态图,需要手动开启动态图。
  2. tf.keras模块上的区别:Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)。TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码。

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。

TensorFlow 1.0 默认是静态图,需要手动开启动态图。

2. tf.keras模块上的区别

Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。

TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)

TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。

3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码

借鉴:

2.2 tensorflow2官方demo_哔哩哔哩_bilibili

相关推荐
DES 仿真实践家10 分钟前
【Day 11-N22】Python类(3)——Python的继承性、多继承、方法重写
开发语言·笔记·python
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
云泽野5 小时前
【Java|集合类】list遍历的6种方式
java·python·list
麻雀无能为力6 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心6 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
IMPYLH6 小时前
Python 的内置函数 reversed
笔记·python
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi