Tensorflow1.0 和 Tensorflow2.0之间的区别

一、搭建深度学习模型的区别(背出来!!!)

对于Tensorflow1.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算session.run()

对于Tensorflow 2.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算model()

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

  1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。
    TensorFlow 1.0 默认是静态图,需要手动开启动态图。
  2. tf.keras模块上的区别:Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)。TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码。

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。

TensorFlow 1.0 默认是静态图,需要手动开启动态图。

2. tf.keras模块上的区别

Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。

TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)

TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。

3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码

借鉴:

2.2 tensorflow2官方demo_哔哩哔哩_bilibili

相关推荐
weixin_4462608527 分钟前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE32033 分钟前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎33 分钟前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经33 分钟前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
MarcoPage2 小时前
Python 字典推导式入门:一行构建键值对映射
java·linux·python
TG:@yunlaoda360 云老大3 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗4 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄7 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭7 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t7 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite