Tensorflow1.0 和 Tensorflow2.0之间的区别

一、搭建深度学习模型的区别(背出来!!!)

对于Tensorflow1.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算session.run()

对于Tensorflow 2.0,

step 01 :准备输入数据

step 02:定义输入PlaceHolder

step 03:搭建模型

step 04:定义损失函数及优化器

step 05:初始化所有变量

step 06:创建会话session

step 07:传参计算model()

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

  1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。
    TensorFlow 1.0 默认是静态图,需要手动开启动态图。
  2. tf.keras模块上的区别:Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)。TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码。

二、TensorFlow 2.0 相比于TensorFlow 1.0 的其他区别

1. TensorFlow 2.0 动态图机制默认开启,方便开发者调试。

TensorFlow 1.0 默认是静态图,需要手动开启动态图。

2. tf.keras模块上的区别

Keras是对TensorFlow的更高一层封装,简化了TensorFlow的使用。

TensorFlow 2.0中搭建网络,官方推荐使用Keras提供的方法。有两种搭建风格:Keras Function API (tf1中搭建模型的风格)和 Model Subclassing API(类似于Pytorch中搭建模型的风格)

TensorFlow 2.0 删除了重复、废弃的API。而在TensorFlow 1.0,同一个功能可以找到多个API实现,会给开发者造成疑惑。

3.在TensorFlow 2.0 中使用 @tf.function 装饰器,构造高效的Python代码

借鉴:

2.2 tensorflow2官方demo_哔哩哔哩_bilibili

相关推荐
Open-AI几秒前
Python如何判断一个数是几位数
python
极客代码4 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深6 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
疯一样的码农10 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
进击的六角龙1 小时前
Python中处理Excel的基本概念(如工作簿、工作表等)
开发语言·python·excel
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
一者仁心1 小时前
【AI技术】PaddleSpeech
人工智能