图论——二分图

图论------二分图

二分图通俗解释

有一个图,将顶点分成两类,边只存在不同类顶点之间,同类顶点之间设有边。称图 G 为二部图,或称二分图,也称欧图。

性质

  • 二分图不含有奇数环
  • 图中没有奇数环,一定可以转换为二分图

判断二分图------染色法(dfs)

可以用二染色方式染色,那么就是二分图

代码
输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式

如果给定图是二分图,则输出 Yes,否则输出 No

cpp 复制代码
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1e5 + 10, M = 2e5 + 10;

// 链式前向星 
int h[N], e[M], ne[M], idx;

void add(int a, int b) {
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx ++;
}

// 各个点的颜色,0 未染色,1 是红色,2 是黑色 
int color[N];

bool dfs(int u, int c) {
	color[u] = c;
	for (int i = h[u]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!color[j]) {
			if (!dfs(j, 3 - c)) 
				return false;
		}
		else if (color[j] == c)	return false;
	}
	return true;
}

int main() {
	memset(h, -1, sizeof h);
	
	int n, m;
	cin >> n >> m;
	while (m --) {
		int a, b;
		cin >> a >> b;
		add(a, b);
		add(b, a);
	}
	
	bool flag = true;
	for (int i = 1; i <= n; i ++) {
		if (!color[i]) {
			if (!dfs(i, 1)) {
				flag = false;
				break;
			}
		}
	}
	if (flag)	puts("Yes");
	else	puts("No");
	return 0;
}

二分图的最大匹配------匈牙利算法(详细证明请见《算法导论》)

匹配:在图论中,一个「匹配」是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替 路称为增广路(agumenting path)。

代码
输入格式

第一行包含三个整数 n1、 n2 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式

输出一个整数,表示二分图的最大匹配数。

cpp 复制代码
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 100010;

int h[N], e[M], ne[M], idx;

void add(int a, int b) {
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx ++;
}

int match[N];
bool st[N];

bool find(int x) {
	for (int i = h[x]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!st[j]) {
			st[j] = true;
			if (!match[j] || find(match[j])) {
				match[j] = x;
				return true;
			}
		}
	}
	return false;
}

int main() {
	memset(h, -1, sizeof h);
	int n1, n2, m;
	cin >> n1 >> n2 >> m;
	while (m --) {
		int a, b;
		cin >> a >> b;
		add(a, b);
	}
	int res = 0;
	for (int i = 1; i <= n1; i ++) {
		memset(st, 0, sizeof st);
		if (find(i))	res ++;
	}
	cout << res << endl;
	
	return 0;
}
相关推荐
大千AI助手3 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
YuTaoShao5 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记5 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲5 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
刘海东刘海东6 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
pumpkin845146 小时前
Rust 调用 C 函数的 FFI
c语言·算法·rust
挺菜的7 小时前
【算法刷题记录(简单题)003】统计大写字母个数(java代码实现)
java·数据结构·算法
mit6.8247 小时前
7.6 优先队列| dijkstra | hash | rust
算法
2401_858286117 小时前
125.【C语言】数据结构之归并排序递归解法
c语言·开发语言·数据结构·算法·排序算法·归并排序