图论——二分图

图论------二分图

二分图通俗解释

有一个图,将顶点分成两类,边只存在不同类顶点之间,同类顶点之间设有边。称图 G 为二部图,或称二分图,也称欧图。

性质

  • 二分图不含有奇数环
  • 图中没有奇数环,一定可以转换为二分图

判断二分图------染色法(dfs)

可以用二染色方式染色,那么就是二分图

代码
输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。

输出格式

如果给定图是二分图,则输出 Yes,否则输出 No

cpp 复制代码
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1e5 + 10, M = 2e5 + 10;

// 链式前向星 
int h[N], e[M], ne[M], idx;

void add(int a, int b) {
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx ++;
}

// 各个点的颜色,0 未染色,1 是红色,2 是黑色 
int color[N];

bool dfs(int u, int c) {
	color[u] = c;
	for (int i = h[u]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!color[j]) {
			if (!dfs(j, 3 - c)) 
				return false;
		}
		else if (color[j] == c)	return false;
	}
	return true;
}

int main() {
	memset(h, -1, sizeof h);
	
	int n, m;
	cin >> n >> m;
	while (m --) {
		int a, b;
		cin >> a >> b;
		add(a, b);
		add(b, a);
	}
	
	bool flag = true;
	for (int i = 1; i <= n; i ++) {
		if (!color[i]) {
			if (!dfs(i, 1)) {
				flag = false;
				break;
			}
		}
	}
	if (flag)	puts("Yes");
	else	puts("No");
	return 0;
}

二分图的最大匹配------匈牙利算法(详细证明请见《算法导论》)

匹配:在图论中,一个「匹配」是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替 路称为增广路(agumenting path)。

代码
输入格式

第一行包含三个整数 n1、 n2 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式

输出一个整数,表示二分图的最大匹配数。

cpp 复制代码
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 100010;

int h[N], e[M], ne[M], idx;

void add(int a, int b) {
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx ++;
}

int match[N];
bool st[N];

bool find(int x) {
	for (int i = h[x]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!st[j]) {
			st[j] = true;
			if (!match[j] || find(match[j])) {
				match[j] = x;
				return true;
			}
		}
	}
	return false;
}

int main() {
	memset(h, -1, sizeof h);
	int n1, n2, m;
	cin >> n1 >> n2 >> m;
	while (m --) {
		int a, b;
		cin >> a >> b;
		add(a, b);
	}
	int res = 0;
	for (int i = 1; i <= n1; i ++) {
		memset(st, 0, sizeof st);
		if (find(i))	res ++;
	}
	cout << res << endl;
	
	return 0;
}
相关推荐
priority_key2 小时前
排序算法:堆排序、快速排序、归并排序
java·后端·算法·排序算法·归并排序·堆排序·快速排序
不染尘.3 小时前
2025_11_7_刷题
开发语言·c++·vscode·算法
来荔枝一大筐4 小时前
力扣 寻找两个正序数组的中位数
算法
算法与编程之美4 小时前
理解Java finalize函数
java·开发语言·jvm·算法
地平线开发者4 小时前
LLM 训练基础概念与流程简介
算法·自动驾驶
点云SLAM4 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
星释4 小时前
Rust 练习册 :Matching Brackets与栈数据结构
数据结构·算法·rust
地平线开发者4 小时前
Camsys 时间戳信息简介
算法·自动驾驶
星释4 小时前
Rust 练习册 :Luhn与校验算法
java·算法·rust
代码雕刻家4 小时前
C语言中关于类型转换不匹配的解决方案
c语言·开发语言·算法