Re58:读论文 REALM: Retrieval-Augmented Language Model Pre-Training

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:REALM: Retrieval-Augmented Language Model Pre-Training

模型名称:Retrieval-Augmented Language Model pre-training (REALM)

本文是2020年ICML论文,作者来自谷歌,关注RAG+LLM。目标是解决纯用LM参数储存知识就得让LM尺寸越来越大+模块化+可解释。解决方案思路不复杂,就是从维百里找文章,加到输入里面做QA,预训练检索表征模块,在微调时隔好几步就重新更新一下检索表征。检索是可以更新的(可以在老数据上预训练,在新数据上做表征)

这玩意也能端到端真是太牛逼了

retrieve-then-predict

从维百中检索知识(检索到文章),将原文和检索到的文本拼一起预训练

这个具体如何实现端到端训练其实我没太看懂,总之就是说想了个办法,这个检索文档的过程可以定义为Maximum Inner Product Search (MIPS)

下游任务是Open-QA,传统解决方案是从语料库中找出问题对应的原文(retrieval-based),或者直接生成(generation-based)

1. REALM模块

  1. 预训练:MLM
    retrieve, then predict
    检索文档 z z z
    预测: p ( y ∣ z , x ) p(y|z,x) p(y∣z,x)
  2. 微调:Open-QA
  3. neural knowledge retriever:内积

    表征模型:BERT-style Transformers

    对[CLS]表征做线性转换降维:

    这玩意儿还专门分开表征标题和正文,真详细啊。
  4. knowledge-augmented encoder
    join x x x and z z z
    MLM预训练:

    微调时假设答案 y y y 是 z z z 中的连续tokens。 S ( z , y ) S(z,y) S(z,y)是spans:

    所有span指向的可能性是加总
  5. 训练:最大似然
    简化在所有语料库文档上的求和→top k文档求和
    然后这里有一块我没看懂的MIPS,略,大概就是说需要经常重算 ( z ∣ x ) (z|x) (z∣x) 以简化计算balabala

    这个仅用于预训练,微调不更新知识库向量

数学分析看不懂,略。

  1. Injecting inductive biases into pre-training
    Salient span masking:mask那种需要world knowledge的span
    Null document:不用检索的时候就放个这个
    Prohibiting trivial retrievals:这个是考虑到有时给我们找到原句了,这不得行,所以在预训练时直接把这种情况给删了
    Initialization:这个主要是担心retriever的表征不好(冷启动问题): Inverse Cloze Task (ICT) 预测句子出处。knowledge-augmented encoder用BERT

2. 实验

数据集里面那个CuratedTrec有点怪啊

主实验结果:

消融实验:

3. 其他

附录开篇上来就是数学公式,害怕。

附录还没看,如果以后有相关研究需求的话再来细看。

相关推荐
黑客-雨几秒前
从零开始:如何用Python训练一个AI模型(超详细教程)非常详细收藏我这一篇就够了!
开发语言·人工智能·python·大模型·ai产品经理·大模型学习·大模型入门
是Dream呀1 分钟前
引领AI发展潮流:打造大模型时代的安全与可信——CCF-CV企业交流会走进合合信息会议回顾
人工智能·安全·生成式ai
日出等日落2 分钟前
小白也能轻松上手的GPT-SoVITS AI语音克隆神器一键部署教程
人工智能·gpt
孤独且没人爱的纸鹤15 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
后端研发Marion17 分钟前
【AI编辑器】字节跳动推出AI IDE——Trae,专为中文开发者深度定制
人工智能·ai编程·ai程序员·trae·ai编辑器
Tiger Z40 分钟前
R 语言科研绘图 --- 散点图-汇总
人工智能·程序人生·r语言·贴图
小深ai硬件分享2 小时前
Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
服务器·人工智能·深度学习
hunter2062063 小时前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z3 小时前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos4 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习