Re58:读论文 REALM: Retrieval-Augmented Language Model Pre-Training

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:REALM: Retrieval-Augmented Language Model Pre-Training

模型名称:Retrieval-Augmented Language Model pre-training (REALM)

本文是2020年ICML论文,作者来自谷歌,关注RAG+LLM。目标是解决纯用LM参数储存知识就得让LM尺寸越来越大+模块化+可解释。解决方案思路不复杂,就是从维百里找文章,加到输入里面做QA,预训练检索表征模块,在微调时隔好几步就重新更新一下检索表征。检索是可以更新的(可以在老数据上预训练,在新数据上做表征)

这玩意也能端到端真是太牛逼了

retrieve-then-predict

从维百中检索知识(检索到文章),将原文和检索到的文本拼一起预训练

这个具体如何实现端到端训练其实我没太看懂,总之就是说想了个办法,这个检索文档的过程可以定义为Maximum Inner Product Search (MIPS)

下游任务是Open-QA,传统解决方案是从语料库中找出问题对应的原文(retrieval-based),或者直接生成(generation-based)

1. REALM模块

  1. 预训练:MLM
    retrieve, then predict
    检索文档 z z z
    预测: p ( y ∣ z , x ) p(y|z,x) p(y∣z,x)
  2. 微调:Open-QA
  3. neural knowledge retriever:内积

    表征模型:BERT-style Transformers

    对[CLS]表征做线性转换降维:

    这玩意儿还专门分开表征标题和正文,真详细啊。
  4. knowledge-augmented encoder
    join x x x and z z z
    MLM预训练:

    微调时假设答案 y y y 是 z z z 中的连续tokens。 S ( z , y ) S(z,y) S(z,y)是spans:

    所有span指向的可能性是加总
  5. 训练:最大似然
    简化在所有语料库文档上的求和→top k文档求和
    然后这里有一块我没看懂的MIPS,略,大概就是说需要经常重算 ( z ∣ x ) (z|x) (z∣x) 以简化计算balabala

    这个仅用于预训练,微调不更新知识库向量

数学分析看不懂,略。

  1. Injecting inductive biases into pre-training
    Salient span masking:mask那种需要world knowledge的span
    Null document:不用检索的时候就放个这个
    Prohibiting trivial retrievals:这个是考虑到有时给我们找到原句了,这不得行,所以在预训练时直接把这种情况给删了
    Initialization:这个主要是担心retriever的表征不好(冷启动问题): Inverse Cloze Task (ICT) 预测句子出处。knowledge-augmented encoder用BERT

2. 实验

数据集里面那个CuratedTrec有点怪啊

主实验结果:

消融实验:

3. 其他

附录开篇上来就是数学公式,害怕。

附录还没看,如果以后有相关研究需求的话再来细看。

相关推荐
张较瘦_10 分钟前
[论文阅读] 人工智能 | 用大语言模型抓虫:如何让网络协议实现与RFC规范对齐
论文阅读·人工智能·语言模型
qb_jiajia16 分钟前
微软认证考试科目众多?该如何选择?
人工智能·microsoft·微软·云计算
pen-ai29 分钟前
【统计方法】蒙特卡洛
人工智能·机器学习·概率论
说私域35 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的生态农庄留存运营策略研究
人工智能·小程序·开源·零售
摘取一颗天上星️43 分钟前
大模型微调技术全景图:从全量更新到参数高效适配
人工智能·深度学习·机器学习
要努力啊啊啊1 小时前
策略梯度核心:Advantage 与 GAE 原理详解
论文阅读·人工智能·深度学习·自然语言处理
AI航海家(Ethan)1 小时前
RAG技术解析:实现高精度大语言模型知识增强
人工智能·语言模型·自然语言处理
拾忆-eleven1 小时前
NLP学习路线图(二十五):注意力机制
自然语言处理·nlp
soldierluo1 小时前
AI基础知识(LLM、prompt、rag、embedding、rerank、mcp、agent、多模态)
人工智能·prompt·embedding
J_Xiong01171 小时前
【VLAs篇】02:Impromptu VLA—用于驱动视觉-语言-动作模型的开放权重和开放数据
语言模型·机器人