深度学习 该用什么标准判断差异最小

决定差异最小的标准通常依赖于您的具体问题和任务。以下是一些常见的用于评估预测性能的标准和思路:

  1. **均方根误差 (RMSE):** RMSE 是预测值和真实值之间差异的平方的平均值的平方根。它对较大的误差更加敏感。
python 复制代码
   from sklearn.metrics import mean_squared_error
   rmse = mean_squared_error(result_df['Real_Data'], result_df['Predicted_Data'], squared=False)
  1. **平均绝对误差 (MAE):** MAE 是预测值和真实值之间绝对差异的平均值。它对异常值不太敏感。
python 复制代码
   from sklearn.metrics import mean_absolute_error
   mae = mean_absolute_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **平均百分比误差 (MAPE):** MAPE 表示平均预测误差的百分比。它在百分比方面提供了直观的度量。
python 复制代码
   def mean_absolute_percentage_error(y_true, y_pred): 
       y_true, y_pred = np.array(y_true), np.array(y_pred)
       return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
   mape = mean_absolute_percentage_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **决定系数 (R-squared):** 决定系数表示模型能够解释目标变量方差的百分比。取值范围在0到1之间,越接近1表示模型拟合得越好。
python 复制代码
   from sklearn.metrics import r2_score
   r_squared = r2_score(result_df['Real_Data'], result_df['Predicted_Data'])

您可以选择一个或多个这些指标,具体取决于您关心的方面。例如,如果您更关注异常值,可能更倾向于使用 MAE 或 MAPE;如果您关心整体趋势和波动,可能更倾向于使用 RMSE 或 R-squared。在选择标准时,最好根据您的问题领域和任务目标来权衡不同的性能指标。

相关推荐
IALab-检测行业AI报告生成6 小时前
IACheck AI 报告审核助手:整体架构与详细结构说明
大数据·人工智能·架构·ai报告审核
码农杂谈00076 小时前
AI 原生企业内容管理:4 大转型策略,破解老软件 AI 升级难题
大数据·人工智能·内容中台·企业内容管理系统·内容生产·ai内容生产·生成式 ai 品牌力
清水白石0086 小时前
突破并行瓶颈:Python 多进程开销全解析与 IPC 优化实战
开发语言·网络·python
rayufo6 小时前
包含思维链CoT的最小大模型
人工智能·chatgpt
麦麦大数据6 小时前
M003_中药可视化系统开发实践:知识图谱与AI智能问答的完美结合
人工智能·flask·llm·vue3·知识图谱·neo4j·ner
生成论实验室7 小时前
即事经:一种基于生成论的宇宙、生命与文明新范式
人工智能·科技·神经网络·算法·信息与通信
百锦再7 小时前
Java之Volatile 关键字全方位解析:从底层原理到最佳实践
java·开发语言·spring boot·struts·kafka·tomcat·maven
量子-Alex7 小时前
【大模型思维链】RAP中如何通过提示词将LLM改造为世界模型
人工智能·深度学习·机器学习
Lupino7 小时前
IoT 平台可编程化:基于 Pydantic Monty 构建工业级智能自动化链路
python
daad7777 小时前
rcu 内核线程
java·开发语言