深度学习 该用什么标准判断差异最小

决定差异最小的标准通常依赖于您的具体问题和任务。以下是一些常见的用于评估预测性能的标准和思路:

  1. **均方根误差 (RMSE):** RMSE 是预测值和真实值之间差异的平方的平均值的平方根。它对较大的误差更加敏感。
python 复制代码
   from sklearn.metrics import mean_squared_error
   rmse = mean_squared_error(result_df['Real_Data'], result_df['Predicted_Data'], squared=False)
  1. **平均绝对误差 (MAE):** MAE 是预测值和真实值之间绝对差异的平均值。它对异常值不太敏感。
python 复制代码
   from sklearn.metrics import mean_absolute_error
   mae = mean_absolute_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **平均百分比误差 (MAPE):** MAPE 表示平均预测误差的百分比。它在百分比方面提供了直观的度量。
python 复制代码
   def mean_absolute_percentage_error(y_true, y_pred): 
       y_true, y_pred = np.array(y_true), np.array(y_pred)
       return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
   mape = mean_absolute_percentage_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **决定系数 (R-squared):** 决定系数表示模型能够解释目标变量方差的百分比。取值范围在0到1之间,越接近1表示模型拟合得越好。
python 复制代码
   from sklearn.metrics import r2_score
   r_squared = r2_score(result_df['Real_Data'], result_df['Predicted_Data'])

您可以选择一个或多个这些指标,具体取决于您关心的方面。例如,如果您更关注异常值,可能更倾向于使用 MAE 或 MAPE;如果您关心整体趋势和波动,可能更倾向于使用 RMSE 或 R-squared。在选择标准时,最好根据您的问题领域和任务目标来权衡不同的性能指标。

相关推荐
MSTcheng.4 分钟前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann
User_芊芊君子7 分钟前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
lili-felicity7 分钟前
CANN加速Whisper语音识别推理:流式处理与实时转录优化
人工智能·whisper·语音识别
沈浩(种子思维作者)8 分钟前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
行走的小派10 分钟前
引爆AI智能体时代!OPi 6Plus全面适配OpenClaw
人工智能
云边有个稻草人10 分钟前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann
爱吃大芒果11 分钟前
CANN神经网络算子库设计思路:ops-nn项目的工程化实现逻辑
人工智能·深度学习·神经网络
2301_7903009613 分钟前
Python数据库操作:SQLAlchemy ORM指南
jvm·数据库·python
weixin_4997715513 分钟前
C++中的组合模式
开发语言·c++·算法
初级代码游戏14 分钟前
套路化编程 C# winform 自适应缩放布局
开发语言·c#·winform·自动布局·自动缩放