深度学习 该用什么标准判断差异最小

决定差异最小的标准通常依赖于您的具体问题和任务。以下是一些常见的用于评估预测性能的标准和思路:

  1. **均方根误差 (RMSE):** RMSE 是预测值和真实值之间差异的平方的平均值的平方根。它对较大的误差更加敏感。
python 复制代码
   from sklearn.metrics import mean_squared_error
   rmse = mean_squared_error(result_df['Real_Data'], result_df['Predicted_Data'], squared=False)
  1. **平均绝对误差 (MAE):** MAE 是预测值和真实值之间绝对差异的平均值。它对异常值不太敏感。
python 复制代码
   from sklearn.metrics import mean_absolute_error
   mae = mean_absolute_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **平均百分比误差 (MAPE):** MAPE 表示平均预测误差的百分比。它在百分比方面提供了直观的度量。
python 复制代码
   def mean_absolute_percentage_error(y_true, y_pred): 
       y_true, y_pred = np.array(y_true), np.array(y_pred)
       return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
   mape = mean_absolute_percentage_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **决定系数 (R-squared):** 决定系数表示模型能够解释目标变量方差的百分比。取值范围在0到1之间,越接近1表示模型拟合得越好。
python 复制代码
   from sklearn.metrics import r2_score
   r_squared = r2_score(result_df['Real_Data'], result_df['Predicted_Data'])

您可以选择一个或多个这些指标,具体取决于您关心的方面。例如,如果您更关注异常值,可能更倾向于使用 MAE 或 MAPE;如果您关心整体趋势和波动,可能更倾向于使用 RMSE 或 R-squared。在选择标准时,最好根据您的问题领域和任务目标来权衡不同的性能指标。

相关推荐
Y1rong7 小时前
C++ QT之记事本
开发语言·qt
吴佳浩10 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏10 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力10 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
diegoXie11 小时前
Python / R 向量顺序分割与跨步分割
开发语言·python·r语言
程序员小白条11 小时前
0经验如何找实习?
java·开发语言·数据结构·数据库·链表
七牛云行业应用11 小时前
解决OSError: No space left... 给DeepSeek Agent装上无限云硬盘
python·架构设计·七牛云·deepseek·agent开发
土星云SaturnCloud11 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
liulilittle11 小时前
C++ 浮点数封装。
linux·服务器·开发语言·前端·网络·数据库·c++
小马爱打代码11 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring