深度学习 该用什么标准判断差异最小

决定差异最小的标准通常依赖于您的具体问题和任务。以下是一些常见的用于评估预测性能的标准和思路:

  1. **均方根误差 (RMSE):** RMSE 是预测值和真实值之间差异的平方的平均值的平方根。它对较大的误差更加敏感。
python 复制代码
   from sklearn.metrics import mean_squared_error
   rmse = mean_squared_error(result_df['Real_Data'], result_df['Predicted_Data'], squared=False)
  1. **平均绝对误差 (MAE):** MAE 是预测值和真实值之间绝对差异的平均值。它对异常值不太敏感。
python 复制代码
   from sklearn.metrics import mean_absolute_error
   mae = mean_absolute_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **平均百分比误差 (MAPE):** MAPE 表示平均预测误差的百分比。它在百分比方面提供了直观的度量。
python 复制代码
   def mean_absolute_percentage_error(y_true, y_pred): 
       y_true, y_pred = np.array(y_true), np.array(y_pred)
       return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
   mape = mean_absolute_percentage_error(result_df['Real_Data'], result_df['Predicted_Data'])
  1. **决定系数 (R-squared):** 决定系数表示模型能够解释目标变量方差的百分比。取值范围在0到1之间,越接近1表示模型拟合得越好。
python 复制代码
   from sklearn.metrics import r2_score
   r_squared = r2_score(result_df['Real_Data'], result_df['Predicted_Data'])

您可以选择一个或多个这些指标,具体取决于您关心的方面。例如,如果您更关注异常值,可能更倾向于使用 MAE 或 MAPE;如果您关心整体趋势和波动,可能更倾向于使用 RMSE 或 R-squared。在选择标准时,最好根据您的问题领域和任务目标来权衡不同的性能指标。

相关推荐
foundbug999几秒前
MATLAB中实现信号迭代解卷积功能
开发语言·深度学习·matlab
程序员小远4 分钟前
完整的项目测试方案流程
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
程序猿阿伟6 分钟前
《量子算法开发实战手册:Python全栈能力的落地指南》
python·算法·量子计算
AI小怪兽14 分钟前
RoLID-11K:面向小目标检测的行车记录仪路边垃圾数据集
人工智能·目标检测·计算机视觉
拉普拉斯妖10819 分钟前
DAY41 简单CNN
人工智能·神经网络·cnn
雪风飞舞20 分钟前
python根据音频生成柱状图
开发语言·python·音视频
学Linux的语莫25 分钟前
python开发知识点
python
nbsaas-boot28 分钟前
slice / map 在 Go GC 与内存碎片上的真实成本
开发语言·后端·golang
予枫的编程笔记38 分钟前
【Java进阶】掌握布隆过滤器,守住高并发系统的第一道防线
人工智能
过期的秋刀鱼!38 分钟前
机器学习-过拟合&欠拟合问题
人工智能·机器学习