logits后面接softmax的作用

在深度学习中,将Logits(逻辑值)输入 softmax 函数的主要目的是将原始的未经处理的分数转换为概率分布。Softmax 函数能够将Logits转化为归一化的概率值,使得每个类别的分数都在0到1之间,且所有类别的概率之和等于1。

Softmax 函数的表达式如下:

其中,是Logits中第 个元素,是Softmax 函数的输出,表示第个类别的概率。

通过Softmax,原始的Logits中较大的值会被映射到更大的概率,而较小的值则对应较小的概率。这样的转换使得模型的输出更易于解释,可以用于多分类问题的决策和预测。

在分类任务中,通常会选择具有最高概率的类别作为最终的预测结果。Softmax 的使用也有助于模型训练,因为它引入了梯度信息,使得模型更容易进行反向传播优化。

相关推荐
PAK向日葵6 分钟前
【算法导论】PDD 0817笔试题题解
算法·面试
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20251 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR2 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
地平线开发者3 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
地平线开发者3 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945193 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
星星火柴9364 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法