【扩散模型】9、Imagen | 借用语言模型的能力来实现文生图(NIPS2022 Oral)

文章目录

    • 一、背景
    • 二、方法
      • [2.1 预训练的语言编码器](#2.1 预训练的语言编码器)
      • [2.2 扩散模型和 classifier-free guidance](#2.2 扩散模型和 classifier-free guidance)
    • 三、效果

论文:Imagen: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

官网:https://www.assemblyai.com/blog/how-imagen-actually-works/#how-imagen-works-a-deep-dive

博客:https://cloud.tencent.com/developer/article/2202539

出处:谷歌 | NIPS2022 Oral

一、背景

本文提出的 Imagen,是一个借用语言模型结合扩散模型来实现 text-to-image 的生成模型,实现具有语言理解能力的文本到图像的生成

Imagen 模型包括两部分:

  • 固定的 T5-XXL encoder:将文本映射到 embedding
  • 64x64 的扩散模型,后面跟两个超分模型,来生成 256x256 和 1024x1024 的模型,所有的扩散模型都是以 text embedding 作为条件,使用 classifier-free guidance

二、方法

2.1 预训练的语言编码器

Text-to-image 模型需要一个很强大的语义理解 text encoder,这样才能捕捉到输入文本的语义

当前很多文生图模型都使用 text-image pairs 的模式来训练文本编码器,例如 CLIP

但本文作者认为大型语言模型也可以是另一种选择来为文本到图片生成任务进行文字编码。最近大型语言模型(如BERT [15], GPT [47, 48, 7], T5 [52]) 上的进步,实现了对于文字理解和生成能力上的飞跃。这些语言模型比只用纯粹比配对图片-文字数据更大规模且分布更广阔丰富的纯粹文字库进行训练。

故本文作者对比了 BERT、T5、CLIP,固定这些模型的权重,也有利于训练过程中减小计算量,对比结果发现,提高文本编码器的体量,就能很好的提高 text-to-image 生成的质量。尽管T5-XXL 和 CLIP 文字编码器在简单基准测试如 MS-COCO 上表现相似,但人类评估员更喜欢T5-XXL 编码器,无论是图片 - 文字对齐还是 DrawBench 片保真度都更好一些。

2.2 扩散模型和 classifier-free guidance

classifier guidance:

  • 不需要重新训练 diffusion 模型,需要训练加噪图片的分类模型,可以控制生成图片的类别,分类图片有多少类,就能控制这个扩散模型生成多少类

classifier-free guidance:

  • 需要重新训练 diffusion 模型,不需要训练分类模型,不受限于类别,直接用条件控制即可

扩散模型就是从噪声数据中一步步来得到原始图片的过程

这个过程中:

  • Classifier guidance:能够通过影响采样过程的梯度来降低生成图片的多样性,提升图片的保真性,可以使用预训练好的扩散模型,需要额外训练一个噪声图片分类器,在采样的时候引导扩散模型
  • Classifier-free guidance:不需要额外训练图片分类器,而是在训练扩散模型时使用 conditional 和 unconditional,随机 10% 的概率 drop 掉文本 c
  • 前面的是 conditional 结果
  • 后面的是 unconditional 结果
  • w 是 guidance weight,w=1 的时候就是有条件模型,w=0 时就是无条件模型,提升 w>1 就会提高有条件引导的作用

三、效果

相关推荐
高锰酸钾_15 分钟前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区15 分钟前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
1***y17818 分钟前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链
腾飞开源19 分钟前
09_Spring AI 干货笔记之多模态
图像处理·人工智能·spring ai·多模态大语言模型·多模态api·媒体输入·文本响应
CM莫问31 分钟前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
七牛云行业应用32 分钟前
告别RLHF?DeepSeek过程奖励(PRM)架构解析与推理数据流设计
人工智能·强化学习·大模型架构·deepseek
xcLeigh33 分钟前
AI的提示词专栏:Prompt 与传统机器学习特征工程的异同
人工智能·机器学习·ai·prompt·提示词
DuHz33 分钟前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
诚丞成35 分钟前
机器学习——生成对抗网络(GANs):原理、进展与应用前景分析
人工智能·机器学习·生成对抗网络
盼小辉丶35 分钟前
图机器学习(7)——图神经网络 (Graph Neural Network, GNN)
人工智能·神经网络·图神经网络·图机器学习