[原创][R语言]股票分析实战[4]:周级别涨幅趋势的相关性

[简介]

常用网名: 猪头三

出生日期: 1981.XX.XX

QQ联系: 643439947

个人网站: 80x86汇编小站 https://www.x86asm.org

编程生涯: 2001年~至今[共22年]

职业生涯: 20年

开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python

开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder

技能种类: 逆向 驱动 磁盘 文件

研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全

项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]

前面三篇文章已经从数据内部中, 挖掘出了两个重要的关系: "频率(Freq)"与"涨幅(RC)", "频率(Freq)"与"周1~周5(DW)" 都有关系. 那么如何通过图形更加容易的进一步验证关系呢?

[先把频数表转换为数据框]

为了更好地把抽象的数据转换为图表, 需要把数据转换为数据框, 这样通过数据框绘画出通俗易懂的图表. R语言提供了相应功能. 首先按照如下的代码, 做一次频数表转数据框的处理.

R 复制代码
load("stock_demo_Total.rdata") #加载R数据
stock_demo_rc_token <- stock_demo_Total[which(stock_demo_Total$RC >=5 & stock_demo_Total$RC <= 10),]
stock_demo_rc_table <- xtabs(~ RC + DW, stock_demo_rc_token)
stock_demo_rc_table_db <- data.frame(matrix(stock_demo_rc_table, nrow = nrow(stock_demo_rc_table), ncol = ncol(stock_demo_rc_table))) #频数表转数据框
colnames(stock_demo_rc_table_db) <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday") #修正列名称
rownames(stock_demo_rc_table_db) <- c("5%", "6%", "7%", "8%", "9%", "10%") #修正行名称

[箱线图]

这时候可以通过stock_demo_rc_table_db的数据框, 进行一次 箱线图 处理. 看看"频率(Freq)"与"周1~周5(DW)" 的规律, 代码如下:

R 复制代码
boxplot(stock_demo_rc_table_db, xlab = "Day of the Week", ylab = "Frequency")

这是很容易观察: 箱线图的走势跟我们的分析符合预期: 周3, 周4, 周5的交易比周1, 周2活跃. 为什么呢? 因为他们的上下范围都扩大了. 另外还要特别注意如下2个特点:

1> 红线: 形成反弹趋势
2> 篮圈: 站稳底部形成支撑

[柱状图]

我们再另外打印一个柱状图, 看看"频率(Freq)"与"涨幅(RC)"的规律, 代码如下:

R 复制代码
barplot(as.matrix.data.frame(stock_demo_rc_table_db), beside = TRUE, legend.text = rownames(stock_demo_rc_table_db), args.legend = list(title = "Stock Rise", ncol = 6, x=16, y=max(as.matrix.data.frame(stock_demo_rc_table_db))+2), main = "Frequency of Stock Rises by Day of the Week", xlab = "Day of the Week", ylab = "Frequency")

还是很容易观察: 柱状图的走势也是符合预期: 形成了一个反弹趋势, 注意图上的红线标注.

[结尾]

通过箱线图, 柱状图的观察, 如果大家喜欢玩超短线的话, 那么可以得出一个经验之谈, 最好是星期3介入抄底, 然后等待星期4, 星期5暴涨. 那么事实是不是那么简单呢? 一个暴涨的股票, 肯定还有其他很多因素决定, 所以还需要做大量的额外分析, 后期敬请期待...

相关推荐
lilye6618 分钟前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
中科岩创2 小时前
某地老旧房屋自动化监测项目
大数据·物联网·自动化
viperrrrrrrrrr73 小时前
大数据学习(95)-谓词下推
大数据·sql·学习
汤姆yu4 小时前
基于python大数据的旅游可视化及推荐系统
大数据·旅游·可视化·算法推荐
zhangjin12224 小时前
kettle从入门到精通 第九十四课 ETL之kettle MySQL Bulk Loader大批量高性能数据写入
大数据·数据仓库·mysql·etl·kettle实战·kettlel批量插入·kettle mysql
哈哈真棒5 小时前
hadoop 集群的常用命令
大数据
阿里云大数据AI技术5 小时前
百观科技基于阿里云 EMR 的数据湖实践分享
大数据·数据库
泛微OA办公系统5 小时前
上市电子制造企业如何实现合规的质量文件管理?
大数据·制造
镜舟科技6 小时前
迈向云原生:理想汽车 OLAP 引擎变革之路
大数据·数据库·云原生
山山而川粤6 小时前
SSM考研信息查询系统
java·大数据·运维·服务器·开发语言·数据库·考研