对caffe跑前向后生成的预测文件画ROC曲线

在前面一篇python版的caffe前向中,生成了一个用于画ROC曲线的txt文件,作为本代码的输入:

bash 复制代码
# -*- coding:utf-8
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve,auc
import numpy as np

colors = ['r', 'g', 'b', 'yellow', 'pink', 'black', 'purple', 'lime']

def get_output_file1(output_file, classNumber):
    prod_all=[]
    label_all=[]
    for line in open(output_file):
        x = line.split()
        prod=[]
        label=[]
        for i in range(int(classNumber)):
            prod.append(float(x[i]))
        tag = int(x[classNumber])#int(x[classNumber])
        for j in range(classNumber):
            if (j == tag):
                label.append(1)
            else:
                label.append(0)
        prod_all.append(prod)
        label_all.append(label)
    return  prod_all,label_all

def ROC(prod_all, label_all, classLabel, output_txtname, rgb="r", leged="line"):
    y_true = np.array(label_all)
    y_predict = np.array(prod_all)
    fpr, tpr, thr = roc_curve(y_true[:, classLabel], y_predict[:, classLabel])
    fid = open(output_txtname, 'a+')
    fid.writelines(str(classLabel)+"\n"+" fpr  tpr   thr"+"\n")
    for i in range(len(fpr)):
        fid.writelines( str(fpr[i])+" "+str(tpr[i])+" "+str(thr[i])+"\n")
    AUC=auc(fpr, tpr)
    plt.plot(fpr, tpr,  clip_on=False,color=rgb,label=leged+'-'+str(AUC)[0:6])
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.legend(loc='best')
    return AUC

if __name__ == '__main__':

    classNumber = 3
    classes = ['eye','nose', 'ear']

    input_txtname = '/.../roc.txt'

    output_txtname = './roc1_th.txt'
    output_imgname = './roc8.jpg'

    prod_all, label_all = get_output_file1(input_txtname, classNumber)
    AUC = []
    for i in range(classNumber):
        AUC.append(ROC(prod_all, label_all, i, output_txtname, rgb=colors[i], leged=classes[i]))
    #plt.title("AUC")
    #plt.show()
    plt.savefig(output_imgname)

这里的colors为每个类的曲线的颜色,颜色的数量要多于类别个数否则不够用。

相关推荐
Blossom.1182 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E2 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese2 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz2 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin3 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区3 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)3 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1183 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~3 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
hao_wujing3 小时前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测