对caffe跑前向后生成的预测文件画ROC曲线

在前面一篇python版的caffe前向中,生成了一个用于画ROC曲线的txt文件,作为本代码的输入:

bash 复制代码
# -*- coding:utf-8
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve,auc
import numpy as np

colors = ['r', 'g', 'b', 'yellow', 'pink', 'black', 'purple', 'lime']

def get_output_file1(output_file, classNumber):
    prod_all=[]
    label_all=[]
    for line in open(output_file):
        x = line.split()
        prod=[]
        label=[]
        for i in range(int(classNumber)):
            prod.append(float(x[i]))
        tag = int(x[classNumber])#int(x[classNumber])
        for j in range(classNumber):
            if (j == tag):
                label.append(1)
            else:
                label.append(0)
        prod_all.append(prod)
        label_all.append(label)
    return  prod_all,label_all

def ROC(prod_all, label_all, classLabel, output_txtname, rgb="r", leged="line"):
    y_true = np.array(label_all)
    y_predict = np.array(prod_all)
    fpr, tpr, thr = roc_curve(y_true[:, classLabel], y_predict[:, classLabel])
    fid = open(output_txtname, 'a+')
    fid.writelines(str(classLabel)+"\n"+" fpr  tpr   thr"+"\n")
    for i in range(len(fpr)):
        fid.writelines( str(fpr[i])+" "+str(tpr[i])+" "+str(thr[i])+"\n")
    AUC=auc(fpr, tpr)
    plt.plot(fpr, tpr,  clip_on=False,color=rgb,label=leged+'-'+str(AUC)[0:6])
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.legend(loc='best')
    return AUC

if __name__ == '__main__':

    classNumber = 3
    classes = ['eye','nose', 'ear']

    input_txtname = '/.../roc.txt'

    output_txtname = './roc1_th.txt'
    output_imgname = './roc8.jpg'

    prod_all, label_all = get_output_file1(input_txtname, classNumber)
    AUC = []
    for i in range(classNumber):
        AUC.append(ROC(prod_all, label_all, i, output_txtname, rgb=colors[i], leged=classes[i]))
    #plt.title("AUC")
    #plt.show()
    plt.savefig(output_imgname)

这里的colors为每个类的曲线的颜色,颜色的数量要多于类别个数否则不够用。

相关推荐
果冻人工智能4 分钟前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy5 分钟前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能6 分钟前
什么是 MCP,以及你为什么该关注它
人工智能
誉鏐11 分钟前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
正脉科工 CAE仿真14 分钟前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
EasyGBS20 分钟前
视频设备轨迹回放平台EasyCVR打造视频智能融合新平台,驱动智慧机场迈向数字新时代
网络·人工智能·安全·音视频
Chaos_Wang_25 分钟前
NLP高频面试题(三十三)——Vision Transformer(ViT)模型架构介绍
人工智能·自然语言处理·transformer
新知图书38 分钟前
OpenCV单窗口显示多图片
人工智能·opencv·计算机视觉
荷包蛋蛋怪40 分钟前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
小马哥编程42 分钟前
【软测】AI助力测试用例
人工智能·测试用例