对caffe跑前向后生成的预测文件画ROC曲线

在前面一篇python版的caffe前向中,生成了一个用于画ROC曲线的txt文件,作为本代码的输入:

bash 复制代码
# -*- coding:utf-8
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve,auc
import numpy as np

colors = ['r', 'g', 'b', 'yellow', 'pink', 'black', 'purple', 'lime']

def get_output_file1(output_file, classNumber):
    prod_all=[]
    label_all=[]
    for line in open(output_file):
        x = line.split()
        prod=[]
        label=[]
        for i in range(int(classNumber)):
            prod.append(float(x[i]))
        tag = int(x[classNumber])#int(x[classNumber])
        for j in range(classNumber):
            if (j == tag):
                label.append(1)
            else:
                label.append(0)
        prod_all.append(prod)
        label_all.append(label)
    return  prod_all,label_all

def ROC(prod_all, label_all, classLabel, output_txtname, rgb="r", leged="line"):
    y_true = np.array(label_all)
    y_predict = np.array(prod_all)
    fpr, tpr, thr = roc_curve(y_true[:, classLabel], y_predict[:, classLabel])
    fid = open(output_txtname, 'a+')
    fid.writelines(str(classLabel)+"\n"+" fpr  tpr   thr"+"\n")
    for i in range(len(fpr)):
        fid.writelines( str(fpr[i])+" "+str(tpr[i])+" "+str(thr[i])+"\n")
    AUC=auc(fpr, tpr)
    plt.plot(fpr, tpr,  clip_on=False,color=rgb,label=leged+'-'+str(AUC)[0:6])
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.legend(loc='best')
    return AUC

if __name__ == '__main__':

    classNumber = 3
    classes = ['eye','nose', 'ear']

    input_txtname = '/.../roc.txt'

    output_txtname = './roc1_th.txt'
    output_imgname = './roc8.jpg'

    prod_all, label_all = get_output_file1(input_txtname, classNumber)
    AUC = []
    for i in range(classNumber):
        AUC.append(ROC(prod_all, label_all, i, output_txtname, rgb=colors[i], leged=classes[i]))
    #plt.title("AUC")
    #plt.show()
    plt.savefig(output_imgname)

这里的colors为每个类的曲线的颜色,颜色的数量要多于类别个数否则不够用。

相关推荐
wangyue45 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试19 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀26 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan27 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀31 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路40 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测