leetcode贪心(最大子序列和、分发饼干、摆动序列)

455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]

输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。

示例 2:

输入: g = [1,2], s = [1,2,3]

输出: 2

解释:你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出 2.

提示:

1 <= g.length <= 3 * 10^4

0 <= s.length <= 3 * 10^4

1 <= g[i], s[j] <= 2^31 - 1

贪心 大饼干优先

python 复制代码
class Solution:
    def findContentChildren(self, g, s):
        g.sort()  # 将孩子的贪心因子排序
        s.sort()  # 将饼干的尺寸排序
        index = len(s) - 1  # 饼干数组的下标,从最后一个饼干开始
        result = 0  # 满足孩子的数量
        for i in range(len(g)-1, -1, -1):  # 遍历胃口,从最后一个孩子开始
            if index >= 0 and s[index] >= g[i]:  # 遍历饼干
                result += 1
                index -= 1
        return result

贪心 小饼干优先

python 复制代码
class Solution:
    def findContentChildren(self, g, s):
        g.sort()  # 将孩子的贪心因子排序
        s.sort()  # 将饼干的尺寸排序
        index = 0
        for i in range(len(s)):  # 遍历饼干
            if index < len(g) and g[index] <= s[i]:  # 如果当前孩子的贪心因子小于等于当前饼干尺寸
                index += 1  # 满足一个孩子,指向下一个孩子
        return index  # 返回满足的孩子数目

376. 摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

输入: [1,7,4,9,2,5]

输出: 6

解释: 整个序列均为摆动序列。

示例 2:

输入: [1,17,5,10,13,15,10,5,16,8]

输出: 7

解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

输入: [1,2,3,4,5,6,7,8,9]

输出: 2

贪心(版本一)

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums):
        if len(nums) <= 1:
            return len(nums)  # 如果数组长度为0或1,则返回数组长度
        curDiff = 0  # 当前一对元素的差值
        preDiff = 0  # 前一对元素的差值
        result = 1  # 记录峰值的个数,初始为1(默认最右边的元素被视为峰值)
        for i in range(len(nums) - 1):
            curDiff = nums[i + 1] - nums[i]  # 计算下一个元素与当前元素的差值
            # 如果遇到一个峰值
            if (preDiff <= 0 and curDiff > 0) or (preDiff >= 0 and curDiff < 0):
                result += 1  # 峰值个数加1
                preDiff = curDiff  # 注意这里,只在摆动变化的时候更新preDiff
        return result  # 返回最长摆动子序列的长度

贪心(版本二)

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)  # 如果数组长度为0或1,则返回数组长度
        preDiff,curDiff ,result  = 0,0,1  #题目里nums长度大于等于1,当长度为1时,其实到不了for循环里去,所以不用考虑nums长度
        for i in range(len(nums) - 1):
            curDiff = nums[i + 1] - nums[i]
            if curDiff * preDiff <= 0 and curDiff !=0:  #差值为0时,不算摆动
                result += 1
                preDiff = curDiff  #如果当前差值和上一个差值为一正一负时,才需要用当前差值替代上一个差值
        return result

动态规划(版本一)

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        # 0 i 作为波峰的最大长度
        # 1 i 作为波谷的最大长度
        # dp是一个列表,列表中每个元素是长度为 2 的列表
        dp = []
        for i in range(len(nums)):
            # 初始为[1, 1]
            dp.append([1, 1])
            for j in range(i):
                # nums[i] 为波谷
                if nums[j] > nums[i]:
                    dp[i][1] = max(dp[i][1], dp[j][0] + 1)
                # nums[i] 为波峰
                if nums[j] < nums[i]:
                    dp[i][0] = max(dp[i][0], dp[j][1] + 1)
        return max(dp[-1][0], dp[-1][1])

动态规划(版本二)

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums):
        dp = [[0, 0] for _ in range(len(nums))]  # 创建二维dp数组,用于记录摆动序列的最大长度
        dp[0][0] = dp[0][1] = 1  # 初始条件,序列中的第一个元素默认为峰值,最小长度为1
        for i in range(1, len(nums)):
            dp[i][0] = dp[i][1] = 1  # 初始化当前位置的dp值为1
            for j in range(i):
                if nums[j] > nums[i]:
                    dp[i][1] = max(dp[i][1], dp[j][0] + 1)  # 如果前一个数比当前数大,可以形成一个上升峰值,更新dp[i][1]
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i][0] = max(dp[i][0], dp[j][1] + 1)  # 如果前一个数比当前数小,可以形成一个下降峰值,更新dp[i][0]
        return max(dp[-1][0], dp[-1][1])  # 返回最大的摆动序列长度

动态规划(版本三)优化

python 复制代码
class Solution:
    def wiggleMaxLength(self, nums):
        if len(nums) <= 1:
            return len(nums)  # 如果数组长度为0或1,则返回数组长度
        
        up = down = 1  # 记录上升和下降摆动序列的最大长度
        for i in range(1, len(nums)):
            if nums[i] > nums[i-1]:
                up = down + 1  # 如果当前数比前一个数大,则可以形成一个上升峰值
            elif nums[i] < nums[i-1]:
                down = up + 1  # 如果当前数比前一个数小,则可以形成一个下降峰值
        
        return max(up, down)  # 返回上升和下降摆动序列的最大长度

53. 最大子序和

力扣题目链接(opens new window)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

暴力法

python 复制代码
class Solution:
    def maxSubArray(self, nums):
        result = float('-inf')  # 初始化结果为负无穷大
        count = 0
        for i in range(len(nums)):  # 设置起始位置
            count = 0
            for j in range(i, len(nums)):  # 从起始位置i开始遍历寻找最大值
                count += nums[j]
                result = max(count, result)  # 更新最大值
        return result
python 复制代码
class Solution:
    def maxSubArray(self, nums):
        result = float('-inf')  # 初始化结果为负无穷大
        count = 0
        for i in range(len(nums)):
            count += nums[i]
            if count > result:  # 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count
            if count <= 0:  # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
                count = 0
        return result
相关推荐
郭wes代码3 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
scan72417 分钟前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活38 分钟前
理解支持向量机
算法·机器学习·支持向量机
大山同学43 分钟前
第三章线性判别函数(二)
线性代数·算法·机器学习
axxy20001 小时前
leetcode之hot100---240搜索二维矩阵II(C++)
数据结构·算法
黑客Ash1 小时前
安全算法基础(一)
算法·安全
AI莫大猫2 小时前
(6)YOLOv4算法基本原理以及和YOLOv3 的差异
算法·yolo
taoyong0012 小时前
代码随想录算法训练营第十一天-239.滑动窗口最大值
c++·算法
Uu_05kkq2 小时前
【C语言1】C语言常见概念(总结复习篇)——库函数、ASCII码、转义字符
c语言·数据结构·算法
清梦20203 小时前
经典问题---跳跃游戏II(贪心算法)
算法·游戏·贪心算法