安装tensorrt环境在linux上

在linux上输入命令

bash

cat /etc/os-release

命令查看系统版本

nvidia-smi命令后有内容弹出而没有报错,表明系统中安装了NVIDIA显卡驱动,并且该命令成功地显示了有关NVIDIA GPU的信息。

输入nvcc -V并且看到输出时,这表明您的系统中已经安装了NVIDIA的CUDA工具包,并且该命令成功地显示了CUDA编译器版本的信息

这里是租的ubuntu远程服务器gpu版本,所以nvidia的驱动和cuda都是安装上了。

输入which nvcc 或 where nvcc即可查看cuda的安装路径

可以看到cuda的安装路径是在/usr/local/cuda/bin/nvcc的路径下

除了cuda还需要cudnn

输入指令查看是否存在cudnn

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

弹出以上内容说明cudnn是存在的,这样安装tensorrt的前置工作就完成了,接下来我们进行tensorrt的安装。

这里直接安装tensorrt相对应的版本即可,在官网地址下载:

Log in | NVIDIA Developer

我这里直接下载linux版本 不去区分ubuntu还是centos了,选择

基本可以支持所有的cuda11了。

安装包下载好后之间拖到服务器上。我这里的路径直接拖到/usr/local的路径下。

安装包拖过去后,输入命令完成解压。

tar -xvf /usr/local/TensorRT-8.6.0.12.Linux.x86_64-gnu.cuda-11.8.tar.gz

完成解压,如果没有权限 就在最前面加上sudo

开始解压

因为我们当前路径是在root下,所以解压的文件在root文件夹下

然后我们开始添加环境路径

export LD_LIBRARY_PATH=/root/TensorRT-8.6.0.12/targets/x86_64-linux-gnu/lib:$LD_LIBRARY_PATH

输入echo $LD_LIBRARY_PATH 查看环境路径

可以看到路径已经加载进来了

然后我们使用pip安装

当前已经是cd在了TensorRT-8.6.0.12的路径下了,

我们直接输入指令安装

pip install ./python/tensorrt-8.6.0-cp38-none-linux_x86_64.whl安装

然后输入以下指令

import tensorrt as rt

print(rt.version)

·正确打印出了tensorrt的版本号就是安装成功了。

相关推荐
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
lly2024062 小时前
Bootstrap 警告框
开发语言
2601_949146532 小时前
C语言语音通知接口接入教程:如何使用C语言直接调用语音预警API
c语言·开发语言
曹牧2 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言
聆风吟º2 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
KYGALYX2 小时前
服务异步通信
开发语言·后端·微服务·ruby
uesowys2 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子2 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
zmzb01032 小时前
C++课后习题训练记录Day98
开发语言·c++