如何从单应矩阵H中分解旋转矩阵R和平移向量t?

在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。

假设求解得到一个单应矩阵H:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \\ \end{bmatrix} H= h11h21h31h12h22h32h13h23h33

单应矩阵H可以分解为旋转矩阵R和平移向量t。具体而言,我们可以将H表示为:
H = R + 1 d t N T H = R + \frac{1}{d}tN^T H=R+d1tNT

其中, R R R是旋转矩阵, t t t是平移向量, d d d是尺度因子, N N N是一个3x3的上三角矩阵。

通过SVD,我们可以将矩阵 H H H分解为三个矩阵 U U U、 S S S和 V T V^T VT:
H = U S V T H = USV^T H=USVT

其中, U U U和 V V V是正交矩阵, S S S是一个对角矩阵。

接着可以通过以下步骤求解R和t:

  1. 从SVD中提取R:
    R = U V T R = UV^T R=UVT
  2. 从SVD中提取t:
    t = 1 d N t = \frac{1}{d}N t=d1N
    其中, N N N是SVD中的对角矩阵 S S S的最后一列。

请注意,这里的 t t t是一个3维向量,而 N N N是一个3x3的矩阵。我们取N的最后一列是因为SVD中,对角矩阵 S S S的对角元素按从大到小的顺序排列,而我们想要取尺度因子 d d d的信息。

这就完成了通过SVD分解单应矩阵求解旋转矩阵 R R R和平移向量 t t t的过程。

相关推荐
No0d1es3 分钟前
电子学会青少年机器人技术(三级)等级考试试卷-实际操作(2025年12月)
青少年编程·机器人·等级考试·三级
Tfly__3 小时前
在PX4 gazebo仿真中加入Mid360(最新)
linux·人工智能·自动驾驶·ros·无人机·px4·mid360
_OP_CHEN5 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
芷栀夏6 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
种时光的人15 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
CV@CV17 小时前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
Zfox_18 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
赫尔·普莱蒂科萨·帕塔18 小时前
智能体工程
人工智能·机器人·软件工程·agi
小白|19 小时前
CANN在自动驾驶感知中的应用:构建低延迟、高可靠多传感器融合推理系统
人工智能·机器学习·自动驾驶
小白|20 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶