如何从单应矩阵H中分解旋转矩阵R和平移向量t?

在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。

假设求解得到一个单应矩阵H:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \\ \end{bmatrix} H= h11h21h31h12h22h32h13h23h33

单应矩阵H可以分解为旋转矩阵R和平移向量t。具体而言,我们可以将H表示为:
H = R + 1 d t N T H = R + \frac{1}{d}tN^T H=R+d1tNT

其中, R R R是旋转矩阵, t t t是平移向量, d d d是尺度因子, N N N是一个3x3的上三角矩阵。

通过SVD,我们可以将矩阵 H H H分解为三个矩阵 U U U、 S S S和 V T V^T VT:
H = U S V T H = USV^T H=USVT

其中, U U U和 V V V是正交矩阵, S S S是一个对角矩阵。

接着可以通过以下步骤求解R和t:

  1. 从SVD中提取R:
    R = U V T R = UV^T R=UVT
  2. 从SVD中提取t:
    t = 1 d N t = \frac{1}{d}N t=d1N
    其中, N N N是SVD中的对角矩阵 S S S的最后一列。

请注意,这里的 t t t是一个3维向量,而 N N N是一个3x3的矩阵。我们取N的最后一列是因为SVD中,对角矩阵 S S S的对角元素按从大到小的顺序排列,而我们想要取尺度因子 d d d的信息。

这就完成了通过SVD分解单应矩阵求解旋转矩阵 R R R和平移向量 t t t的过程。

相关推荐
LitchiCheng21 分钟前
复刻低成本机械臂 SO-ARM100 单关节控制(附代码)
人工智能·机器学习·机器人
微学AI22 分钟前
大模型的应用中A2A(Agent2Agent)架构的部署过程,A2A架构实现不同机器人之间的高效通信与协作
人工智能·架构·机器人·a2a
SZ17011023129 分钟前
泰勒展开式
线性代数·概率论
国货崛起3 小时前
刘强东杀入自动驾驶!京东注册“Joyrobotaxi”商标
人工智能·机器学习·自动驾驶
OpenLoong 开源社区7 小时前
技术视界 | 青龙机器人训练地形详解(三):复杂地形精讲之台阶
机器人
2301_786001269 小时前
螺旋驱动管道机器人的结构设计
机器人
富唯智能9 小时前
复合机器人案例启示:富唯智能如何以模块化创新引领工业自动化新标杆
人工智能·机器人·自动化
百度Geek说9 小时前
中国自动驾驶研发解决方案,第一!
人工智能·机器学习·自动驾驶
一点.点10 小时前
《智能网联汽车 自动驾驶功能道路试验方法及要求》 GB/T 44719-2024——解读
自动驾驶·汽车
cnbestec13 小时前
探索Hello Robot开源移动操作机器人Stretch 3的技术亮点与市场定位
机器人