如何从单应矩阵H中分解旋转矩阵R和平移向量t?

在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。

假设求解得到一个单应矩阵H:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \\ \end{bmatrix} H= h11h21h31h12h22h32h13h23h33

单应矩阵H可以分解为旋转矩阵R和平移向量t。具体而言,我们可以将H表示为:
H = R + 1 d t N T H = R + \frac{1}{d}tN^T H=R+d1tNT

其中, R R R是旋转矩阵, t t t是平移向量, d d d是尺度因子, N N N是一个3x3的上三角矩阵。

通过SVD,我们可以将矩阵 H H H分解为三个矩阵 U U U、 S S S和 V T V^T VT:
H = U S V T H = USV^T H=USVT

其中, U U U和 V V V是正交矩阵, S S S是一个对角矩阵。

接着可以通过以下步骤求解R和t:

  1. 从SVD中提取R:
    R = U V T R = UV^T R=UVT
  2. 从SVD中提取t:
    t = 1 d N t = \frac{1}{d}N t=d1N
    其中, N N N是SVD中的对角矩阵 S S S的最后一列。

请注意,这里的 t t t是一个3维向量,而 N N N是一个3x3的矩阵。我们取N的最后一列是因为SVD中,对角矩阵 S S S的对角元素按从大到小的顺序排列,而我们想要取尺度因子 d d d的信息。

这就完成了通过SVD分解单应矩阵求解旋转矩阵 R R R和平移向量 t t t的过程。

相关推荐
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
Robot2519 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
FreeIPCC12 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
平头哥在等你13 小时前
求一个3*3矩阵对角线元素之和
c语言·算法·矩阵
地平线开发者14 小时前
CPU& 内存加压工具 stress-ng 介绍
算法·自动驾驶
施努卡机器视觉15 小时前
电解车间铜业机器人剥片技术是现代铜冶炼过程中自动化和智能化的重要体现
运维·机器人·自动化
2402_8713219516 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
Angindem19 小时前
子矩阵的和(矩阵前缀和)
线性代数·矩阵
无限大.20 小时前
力扣题解3248 矩阵中的蛇(简单)
算法·leetcode·矩阵
zhd15306915625ff20 小时前
库卡机器人日常维护
网络·机器人·自动化·机器人备件