如何从单应矩阵H中分解旋转矩阵R和平移向量t?

在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。

假设求解得到一个单应矩阵H:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \\ \end{bmatrix} H= h11h21h31h12h22h32h13h23h33

单应矩阵H可以分解为旋转矩阵R和平移向量t。具体而言,我们可以将H表示为:
H = R + 1 d t N T H = R + \frac{1}{d}tN^T H=R+d1tNT

其中, R R R是旋转矩阵, t t t是平移向量, d d d是尺度因子, N N N是一个3x3的上三角矩阵。

通过SVD,我们可以将矩阵 H H H分解为三个矩阵 U U U、 S S S和 V T V^T VT:
H = U S V T H = USV^T H=USVT

其中, U U U和 V V V是正交矩阵, S S S是一个对角矩阵。

接着可以通过以下步骤求解R和t:

  1. 从SVD中提取R:
    R = U V T R = UV^T R=UVT
  2. 从SVD中提取t:
    t = 1 d N t = \frac{1}{d}N t=d1N
    其中, N N N是SVD中的对角矩阵 S S S的最后一列。

请注意,这里的 t t t是一个3维向量,而 N N N是一个3x3的矩阵。我们取N的最后一列是因为SVD中,对角矩阵 S S S的对角元素按从大到小的顺序排列,而我们想要取尺度因子 d d d的信息。

这就完成了通过SVD分解单应矩阵求解旋转矩阵 R R R和平移向量 t t t的过程。

相关推荐
Hi2024021717 小时前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶
jifengzhiling18 小时前
机器人关节模组CR认证全解析
机器人·核心部件中国cr认证
victory043121 小时前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
沫儿笙21 小时前
CLOOS克鲁斯焊接机器人混合气节气装置
人工智能·机器人
Deepoch21 小时前
从“机械臂”到“农艺手”:Deepoc如何让机器人理解果实的生命语言
人工智能·机器人·采摘机器人·农业机器人·具身模型·deepoc
AI科技星1 天前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
思绪漂移1 天前
算法调度:场景分析、策略与工程化技术难点——无人机全量感知 vs 机器人定点路由
机器人·无人机·算法调度
才兄说1 天前
机器人租赁服务中的不确定性:客户视角下的支持体验差异
机器人
yuanmenghao1 天前
CAN系列 — (8) 为什么 Radar Object List 不适合“直接走 CAN 信号”
网络·数据结构·单片机·嵌入式硬件·自动驾驶·信息与通信
RockHopper20251 天前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知