如何从单应矩阵H中分解旋转矩阵R和平移向量t?

在计算机视觉中,单应矩阵通常用于图像配准和相机标定等任务。下面是使用SVD分解单应矩阵来求解旋转矩阵(R)和平移向量(t)的简要推导过程。

假设求解得到一个单应矩阵H:
H = [ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ] H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \\ \end{bmatrix} H= h11h21h31h12h22h32h13h23h33

单应矩阵H可以分解为旋转矩阵R和平移向量t。具体而言,我们可以将H表示为:
H = R + 1 d t N T H = R + \frac{1}{d}tN^T H=R+d1tNT

其中, R R R是旋转矩阵, t t t是平移向量, d d d是尺度因子, N N N是一个3x3的上三角矩阵。

通过SVD,我们可以将矩阵 H H H分解为三个矩阵 U U U、 S S S和 V T V^T VT:
H = U S V T H = USV^T H=USVT

其中, U U U和 V V V是正交矩阵, S S S是一个对角矩阵。

接着可以通过以下步骤求解R和t:

  1. 从SVD中提取R:
    R = U V T R = UV^T R=UVT
  2. 从SVD中提取t:
    t = 1 d N t = \frac{1}{d}N t=d1N
    其中, N N N是SVD中的对角矩阵 S S S的最后一列。

请注意,这里的 t t t是一个3维向量,而 N N N是一个3x3的矩阵。我们取N的最后一列是因为SVD中,对角矩阵 S S S的对角元素按从大到小的顺序排列,而我们想要取尺度因子 d d d的信息。

这就完成了通过SVD分解单应矩阵求解旋转矩阵 R R R和平移向量 t t t的过程。

相关推荐
lbb 小魔仙12 分钟前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
空白诗20 分钟前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
晚霞的不甘1 小时前
CANN × ROS 2:为智能机器人打造实时 AI 推理底座
人工智能·神经网络·架构·机器人·开源
RobotNow2 小时前
优秀的机器人厂商集中平台哪家案例多
机器人
劈星斩月2 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
RobotNow3 小时前
优秀的机器人厂商集中平台哪家效率高
机器人
搬砖者(视觉算法工程师)3 小时前
工具科普介绍之Spherasim:无人机与机器人开发领域的工具
机器人·无人机
池央4 小时前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
鲁邦通物联网5 小时前
技术实战:基于电梯梯控产品融合算法构建高可用机器人梯控中间件
机器人·机器人梯控·agv梯控·机器人乘梯·机器人自主乘梯·agv机器人梯控
深鱼~6 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann