卷积神经网络|制作自己的Dataset

在编写代码训练神经网络之前,导入数据是必不可少的。PyTorch提供了许多预加载的数据集(如FashionMNIST),这些数据集 子类并实现特定于特定数据的函数。

它们可用于对模型进行原型设计和基准测试,加载这些数据集是十分简单的。好吧,那如何加载自己制作的数据集呢?

简单来讲,自定义数据集类必须实现三个函数:initlen__和__getitem。下面代码就实现了一个Dataset

import osimport torchfrom torch.utils.data import Datasetfrom torchvision import transformsfrom PIL import Imageimport numpy as np​class MyDataset(Dataset):    def __init__(self, path_file,transform=None,label_transform=None):        self.path_file=path_file        self.imgs=[name for name in os.listdir(path_file)]#获取path_file路径下所有文件名        self.transform = transform        self.label_transform = label_transform​    def __len__(self):        return len(self.imgs)​    def __getitem__(self, idx):        #get the image        img_path = os.path.join(self.path_file,self.imgs[idx])#获得图片完整路径        image=Image.open(img_path)        image=image.resize((28,28))#修改图片为默认大小        image = np.array(image)        image=torch.from_numpy(image)#将numpy数组转换为张量        image=image.permute(2,0,1)#将H,W,C转换为C,H,W​        if self.transform:            image = self.transform(image)​        #get the label        str1=self.imgs[idx].split('.')        label=torch.tensor(eval(str1[1]))​        if self.label_transform:            label=self.label_transform(label) ​        return image, label

注:上述代码从路径path_file读取文件,准确来讲应该是我们准备的训练图片,格式如下:

cat1.0.jpg

cat2.0.jpg

...

dog1.1.jpg

dog2.1.jpg

...

图片名重要含义:类别(0,1等)

而cat1,dog1这些并不重要,因为0,1,已经反映了图片的类别,这里仅仅是一个习惯,同样jpg也是如此。

实际上,在我们准备图片时,图片名往往不是这样,但直接写个简单的文件处理程序便很容易转变为上述格式

之所以这样命名,就是为容易获得图片和对应的类别,也就是实现自己的Dataset。当然,其它还有许多方法,但核心就是加载自己的数据时获得图片和对应的类别。

再次看一下实现自己的Dataset的架构:

class CustomImageDataset(Dataset):    def __init__(self, path_file, transform=None, target_transform=None):        ...        ...        ...​    def __len__(self):        return len(...)​​​    def __getitem__(self, idx):        ...        ...        ...        if self.transform:            image = self.transform(image)        if self.label_transform:            label = self.label_transform(label)        return image, label

在训练模型时,我们通常希望 在"小批量"中传递样本,在每个时期重新洗牌数据以减少模型过度拟合,并使用 Python 的 加快数据检索速度。

**DataLoader是一个迭代对象,它在一个简单的 API 中为我们抽象了这种复杂性。**下面我们将Dataset带入DataLoader.

path="E:\\3-10\\dogandcats\\train"#图片所在目录training_data=MyDataset(path)train_dataloader = torch.utils.data.DataLoader(training_data, batch_size=2, shuffle=True)

让我们run一下:

>>> trainimg,label=next(iter(train_dataloader))>>> trainimg.size()torch.Size([2, 3, 28, 28])>>> label.size()torch.Size([2])

结果符合预期,与在使用pytorch预加载的数据集格式一样!

点点点,赞和在看都在这儿!

相关推荐
HPC_fac130520678161 小时前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
猎嘤一号2 小时前
个人笔记本安装CUDA并配合Pytorch使用NVIDIA GPU训练神经网络的计算以及CPUvsGPU计算时间的测试代码
人工智能·pytorch·神经网络
天润融通2 小时前
天润融通携手挚达科技:AI技术重塑客户服务体验
人工智能
Elastic 中国社区官方博客4 小时前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
江_小_白5 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
yusaisai大鱼6 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
湫ccc7 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe8 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin8 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪4088 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame