2024 .1.7 Day05_Spark_HomeWork; Spark_SQL

目录

[1. 简述Spark SQL与HIVE的对比](#1. 简述Spark SQL与HIVE的对比)

[2. Spark SQL是什么?](#2. Spark SQL是什么?)

3.代码题

[需求1 直接基于DataFrame来处理,完成SparkSQL版的WordCount词频统计。DSL和SQL两种方式都要实现](#需求1 直接基于DataFrame来处理,完成SparkSQL版的WordCount词频统计。DSL和SQL两种方式都要实现)

[4.创建Spark DataFrame的几种方式?](#4.创建Spark DataFrame的几种方式?)

[5. 创建得到DataFrame的方式有哪些,各自适用场景是怎么样的?](#5. 创建得到DataFrame的方式有哪些,各自适用场景是怎么样的?)

[3.1 text方式读取:](#3.1 text方式读取:)

[3.2 CSV方式读取:](#3.2 CSV方式读取:)

[3.3 JSON读取数据:](#3.3 JSON读取数据:)


1. 简述Spark SQL与HIVE的对比

相同点:

1.都是分布式SQL计算引擎

2.都可以处理大规模的结构化数据

3.都可以建立在YARN集群之上运行

不同点:

  1. Sparksql是基于内存计算 , Hivesql底层是运行在Mr上,也就是基于磁盘进行计算

  2. sparksql没有元数据管理服务, hivesql是有metastore元数据管理服务的

  3. Sparksql底层执行RDD程序 , HIVEsql底层执行MapReduce

  4. Sparksql可以编写sql也可以编写代码, HIVEsql只能编写sql

2. Spark SQL是什么?

SparkSQL是建立在Spark上的一个工具模块,用于处理结构化的数据

3.代码题

需求1 直接基于DataFrame来处理,完成SparkSQL版的WordCount词频统计。DSL和SQL两种方式都要实现

测试数据: hello spark hadoop hive oozie sqoop hello hive hadoop java java python hadoop hive hadoop

python 复制代码
import os
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
import pyspark.sql.functions as F

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
# 绑定指定的Python解释器
from pyspark.sql.types import StructType, IntegerType, StringType, StructField

if __name__ == '__main__':
# 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('需求1词频统计')\
        .master('local[*]')\
        .getOrCreate()
# 2- 数据输入
    init_df = spark.read.text(
        paths='hdfs://node1:8020/input/day05_home_work.txt'
    )
    # 创建侧视图
    init_df.createTempView('words')
python 复制代码
# 3- 数据处理
    print("SQL方式进行词频统计")
    spark.sql("""
    select word,count(1)as cnt 
    from
        (select explode(split(value,' ')) as word 
        from words)
        group by word
        order by cnt desc 
    """).show()
    '''
+------+---+
|  word|cnt|
+------+---+
|hadoop|  4|
|  hive|  3|
| hello|  2|
|  java|  2|
| spark|  1|
| oozie|  1|
| sqoop|  1|
|python|  1|
+------+---+
'''
    print('DSL方式实现词频统计')
    init_df.select(
        F.explode(F.split('value',' ')).alias('word')
    ).groupby('word').agg(
        F.count('word').alias('cnt'),
    ).orderBy('cnt',ascending=False).show()

    '''
    +------+---+
    |  word|cnt|
    +------+---+
    |hadoop|  4|
    |  hive|  3|
    |  java|  2|
    | hello|  2|
    | sqoop|  1|
    | spark|  1|
    |python|  1|
    | oozie|  1|
    +------+---+
    '''

# 4- 数据输出

# 5- 释放资源
    spark.stop()

4.创建Spark DataFrame的几种方式?

1 . 通过RDD得到DataFrame

  1. 内部初始化数据得到DataFrame

  2. 读取外部文件得到DataFrame

5. 创建得到DataFrame的方式有哪些,各自适用场景是怎么样的?

1 . RDD转DataFrame , 场景 : RDD可以存储任意结构的数据类型,而DataFrame只能存储二维表结构化数据, 在使用Spark处理数据的初期,可能输入进来的数据是半结构化或者非结构化的,那么可以先通过RDD对数据进行ETL处理成结构化数据,再使用开发高效率的SparkSQL进行后续数据处理;

  1. 内部初始化数据得到DataFrame , 通过createDataFrame创建DataFrame , 一般用在开发和测试中.因为只能处理少量的数据

  2. 读取外部文件得到DataFrame , Text方式\CSV方式\JSON方式 ;

3.1 text方式读取:

不管文件内容如何,会将所有内容放到一个列中;

默认生成的列名叫做value,数据类型String;并且只能修改value的名称,其他内容无法修改;

3.2 CSV方式读取:

常设置的参数

path:指定文件路径,本地或者hdfs

schema:手动指定元数据信息

sep:指定字段间的分隔符

encoding:指定文件的编码方式

header:指定文件中的第一行是否是字段名称

inferSchema:根据数据内容自动推断数据类型。但是,推断结果可能不精确

3.3 JSON读取数据:

需要手动指定schema信息.如果手动指定的时候,名称字段与json中的key名称不一致,会解析不成功, 以null值填充

csv/json中schema的结构,如果是字符串类型,那么字段名称和字段数据类型间,只能以空格分隔

相关推荐
Zfox_1 小时前
Redis:Hash数据类型
服务器·数据库·redis·缓存·微服务·哈希算法
крон3 小时前
【Auto.js例程】华为备忘录导出到其他手机
开发语言·javascript·智能手机
陈丹阳(滁州学院)3 小时前
若依添加添加监听容器配置(删除键,键过期)
数据库·oracle
zh_xuan3 小时前
c++ 单例模式
开发语言·c++·单例模式
远方16094 小时前
14-Oracle 23ai Vector Search 向量索引和混合索引-实操
数据库·ai·oracle
老胖闲聊4 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1184 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之4 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
豆沙沙包?5 小时前
2025年- H77-Lc185--45.跳跃游戏II(贪心)--Java版
java·开发语言·游戏
GUIQU.5 小时前
【Oracle】数据仓库
数据库·oracle