【Python机器学习】用于回归的决策树

用于回归的决策树与用于分类的决策树类似,在DecisionTreeRegressor中实现。DecisionTreeRegressor不能外推,也不能在训练数据范围之外的数据进行预测。

利用计算机内存历史及格的数据进行实验,数据展示:

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

ram_price=pd.read_csv('ram_price.csv')
plt.semilogy(ram_price.date,ram_price.price)
plt.xlabel('年份')
plt.ylabel('价格')
plt.show()

利用2000年前的历史数据来预测2000年之后的价格,只用日期作为特征,对比决策树、线性模型的预测结果:

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression

plt.rcParams['font.sans-serif'] = ['SimHei']
ram_price=pd.read_csv('ram_price.csv')
#plt.semilogy(ram_price.data,ram_price.price)
data_train=ram_price[ram_price.date<2000]
data_test=ram_price[ram_price.date>=2000]

X_train=np.array(data_train)
#X_train=data_train.date[:, np.newaxis]
y_train=np.log(data_train.price)

tree=DecisionTreeRegressor().fit(X_train,y_train)
line_reg=LinearRegression().fit(X_train,y_train)

X_all = np.array(ram_price)
#X_all=ram_price.date[:,np.newaxis]
pred_tree=tree.predict(X_all)
pred_lr=line_reg.predict(X_all)

price_tree=np.exp(pred_tree)
price_lr=np.exp(pred_lr)

plt.semilogy(data_train.date,data_train.price,label='训练数据')
plt.semilogy(data_test.date,data_test.price,label='测试数据')
plt.semilogy(ram_price.date,price_tree,label='决策树预测')
plt.semilogy(ram_price.date,price_lr,label='线性预测')
plt.legend()
plt.show()

可以看到两个模型的差异非常明显。线性模型用一条直线对数据做近似,对2000年后的价格预测结果非常好,但忽略了训练数据和测试数据中一些更细微的变化。树模型则完美预测了训练数据,但一旦输入超过了模型训练数据的范围,模型就只能持续预测最后一个已知数据点。树不能在训练数据的范围之外生成新的响应,所有基于树的模型都有这个缺点。

相关推荐
im_AMBER2 小时前
学习日志19 python
python·学习
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手5 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
mortimer5 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
NeoFii6 小时前
Day 22: 复习
机器学习
@昵称不存在6 小时前
Flask input 和datalist结合
后端·python·flask
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.06 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
赵英英俊6 小时前
Python day25
python
东林牧之6 小时前
Django+celery异步:拿来即用,可移植性高
后端·python·django