【Python机器学习】用于回归的决策树

用于回归的决策树与用于分类的决策树类似,在DecisionTreeRegressor中实现。DecisionTreeRegressor不能外推,也不能在训练数据范围之外的数据进行预测。

利用计算机内存历史及格的数据进行实验,数据展示:

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

ram_price=pd.read_csv('ram_price.csv')
plt.semilogy(ram_price.date,ram_price.price)
plt.xlabel('年份')
plt.ylabel('价格')
plt.show()

利用2000年前的历史数据来预测2000年之后的价格,只用日期作为特征,对比决策树、线性模型的预测结果:

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression

plt.rcParams['font.sans-serif'] = ['SimHei']
ram_price=pd.read_csv('ram_price.csv')
#plt.semilogy(ram_price.data,ram_price.price)
data_train=ram_price[ram_price.date<2000]
data_test=ram_price[ram_price.date>=2000]

X_train=np.array(data_train)
#X_train=data_train.date[:, np.newaxis]
y_train=np.log(data_train.price)

tree=DecisionTreeRegressor().fit(X_train,y_train)
line_reg=LinearRegression().fit(X_train,y_train)

X_all = np.array(ram_price)
#X_all=ram_price.date[:,np.newaxis]
pred_tree=tree.predict(X_all)
pred_lr=line_reg.predict(X_all)

price_tree=np.exp(pred_tree)
price_lr=np.exp(pred_lr)

plt.semilogy(data_train.date,data_train.price,label='训练数据')
plt.semilogy(data_test.date,data_test.price,label='测试数据')
plt.semilogy(ram_price.date,price_tree,label='决策树预测')
plt.semilogy(ram_price.date,price_lr,label='线性预测')
plt.legend()
plt.show()

可以看到两个模型的差异非常明显。线性模型用一条直线对数据做近似,对2000年后的价格预测结果非常好,但忽略了训练数据和测试数据中一些更细微的变化。树模型则完美预测了训练数据,但一旦输入超过了模型训练数据的范围,模型就只能持续预测最后一个已知数据点。树不能在训练数据的范围之外生成新的响应,所有基于树的模型都有这个缺点。

相关推荐
ValhallaCoder5 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能6 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144876 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile6 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5776 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥6 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7256 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
猫头虎6 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
h64648564h6 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路6 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全