【Python机器学习】用于回归的决策树

用于回归的决策树与用于分类的决策树类似,在DecisionTreeRegressor中实现。DecisionTreeRegressor不能外推,也不能在训练数据范围之外的数据进行预测。

利用计算机内存历史及格的数据进行实验,数据展示:

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']

ram_price=pd.read_csv('ram_price.csv')
plt.semilogy(ram_price.date,ram_price.price)
plt.xlabel('年份')
plt.ylabel('价格')
plt.show()

利用2000年前的历史数据来预测2000年之后的价格,只用日期作为特征,对比决策树、线性模型的预测结果:

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression

plt.rcParams['font.sans-serif'] = ['SimHei']
ram_price=pd.read_csv('ram_price.csv')
#plt.semilogy(ram_price.data,ram_price.price)
data_train=ram_price[ram_price.date<2000]
data_test=ram_price[ram_price.date>=2000]

X_train=np.array(data_train)
#X_train=data_train.date[:, np.newaxis]
y_train=np.log(data_train.price)

tree=DecisionTreeRegressor().fit(X_train,y_train)
line_reg=LinearRegression().fit(X_train,y_train)

X_all = np.array(ram_price)
#X_all=ram_price.date[:,np.newaxis]
pred_tree=tree.predict(X_all)
pred_lr=line_reg.predict(X_all)

price_tree=np.exp(pred_tree)
price_lr=np.exp(pred_lr)

plt.semilogy(data_train.date,data_train.price,label='训练数据')
plt.semilogy(data_test.date,data_test.price,label='测试数据')
plt.semilogy(ram_price.date,price_tree,label='决策树预测')
plt.semilogy(ram_price.date,price_lr,label='线性预测')
plt.legend()
plt.show()

可以看到两个模型的差异非常明显。线性模型用一条直线对数据做近似,对2000年后的价格预测结果非常好,但忽略了训练数据和测试数据中一些更细微的变化。树模型则完美预测了训练数据,但一旦输入超过了模型训练数据的范围,模型就只能持续预测最后一个已知数据点。树不能在训练数据的范围之外生成新的响应,所有基于树的模型都有这个缺点。

相关推荐
GIS工具-gistools202127 分钟前
ArcGIS Excalibur 的新功能
人工智能·arcgis
THMAIL1 小时前
深度学习从入门到精通 - 迁移学习实战:用预训练模型解决小样本难题
人工智能·python·深度学习·算法·机器学习·迁移学习
音视频牛哥1 小时前
AI+ 行动意见解读:音视频直播SDK如何加速行业智能化
人工智能·音视频·人工智能+·ai+ 行动意见·rtsp/rtmp 播放器·低空经济视频链路·工业巡检视频传输
roman_日积跬步-终至千里1 小时前
【软件架构设计(19)】软件架构评估二:软件架构分析方法分类、质量属性场景、软件评估方法发展历程
人工智能·分类·数据挖掘
.鱼子酱1 小时前
机器学习 - 使用 ID3 算法从原理到实际举例理解决策树
算法·决策树·机器学习
和小胖11221 小时前
第一讲 Vscode+Python+anaconda 安装
python
和小胖11221 小时前
第二讲 Vscode+Python+anaconda 高阶环境配置
ide·vscode·python
镭眸2 小时前
因泰立科技:用激光雷达重塑智能工厂物流生态
大数据·人工智能·科技
阿豪Jeremy2 小时前
使用MS-SWIF框架对大模型进行SFT微调
人工智能
慧星云2 小时前
双节模型创作大赛开赛啦:和魔多一起欢庆中秋国庆
人工智能·云计算·aigc