决策树--分类决策树

1、介绍

① 定义

分类决策树通过树形结构来模拟决策过程,决策树由结点和有向边组成。结点有两种类型:内部结

点和叶结点。内部结点表示一个特征或属性叶子节点****表示一个类

② 生成过程

用决策树分类,++从根结点开始,对样本的某一特征进行测试,根据测试结果,将样本分配到其他子++

++结点;这时,每一个子结点对应着该特征的一个取值,如此递归地对样本进行分配,直至达到叶结++

++点。最后将实例分到叶结点的类中++。

③ 示意图

2、特征选择--信息增益或信息增益比

(1)信息增益

① 熵的定义

信息增益是由熵构建而成,熵起源于热力学,后来由香农引用到信息论中,表示的是**「随机变量的**

不确定性」,不确定性越大,代表着熵越大。

由于熵和随机变量的分布有关,所以我们就可以写成:

​​​​​​​​那么什么时候的熵最大呢? 结论是:随机变量的取值等概率分布时,相应的熵最大。

② 信息增益算法

​可以看出,信息增益就是经验熵和经验条件熵的差值,他代表的是指:得知特征A而使类 Y的信息

的不确定性减少的程度。

后者越小,说明对应的不确定性最小,意味着如果选择特征 A 为最优特征时,对于分的类是最为

确定的,对应的就希望这个信息增益是最大的。

③ 例题:对于上述表所给的训练数据集,根据信息增益准则选择最优特征。

④ 缺点:如果不同特征内的分类个数不同,那么取值个数较多的特征计算出的信息增益会更大。因此,信息增益会更倾向于取值较多的特征。

(2)信息增益比

使用信息增益来作为划分训练数据集的特征,存在偏向于选择取值较多的特征的问题。使用信息增

益比可以对这一问题进行校正,这是特征选择的另一准则。

相关推荐
电鱼智能的电小鱼4 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
孫治AllenSun5 小时前
【算法】图相关算法和递归
windows·python·算法
格图素书6 小时前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
DashVector7 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会7 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
夏鹏今天学习了吗7 小时前
【LeetCode热题100(59/100)】分割回文串
算法·leetcode·深度优先
卡提西亚7 小时前
C++笔记-10-循环语句
c++·笔记·算法
还是码字踏实7 小时前
基础数据结构之数组的双指针技巧之对撞指针(两端向中间):三数之和(LeetCode 15 中等题)
数据结构·算法·leetcode·双指针·对撞指针
Khunkin8 小时前
牛顿迭代法:用几何直觉理解方程求根
机器学习
音视频牛哥9 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit