opencv006图像处理之仿射变换(旋转,缩放,平移)

空间变换中的仿射变换对应着五种变换,平移,缩放,旋转,翻转,错切。而这五种变化由原图像转变到变换图像的过程,可以用仿射变换矩阵进行描述。而这个变换过程可以用一个2*3的矩阵与原图进行相乘得到。关键就是这个矩阵M:

仿射变换的函数:

平移,旋转

python 复制代码
cv2.warpAffine(scr, M, dsize, flags, mode, value)

透视

python 复制代码
 cv2.warpPerspective(img1, M, desize......)
  • M: 变换矩阵
  • desize: 输出图片大小
  • flags:与resize中的插值算法一致
  • mode:边界外推法标志(有默认值)
  • value:填充边界值(有默认值)

平移

读入的是二维的图像,所以就不用写最后一行了


向右平移200 (向左就是负数,其他同理)

变换矩阵,最少是float32

M = np.float32([[1, 0, 200], [0, 1, 0]])

向下平移200

变换矩阵,最少是float32

M = np.float32([[1, 0, 0], [0, 1, 200]])

向右下平移

变换矩阵,最少是float32

M = np.float32([[1, 0, 200], [0, 1, 200]])

这个是向右平移的代码:

python 复制代码
import cv2
import numpy as np
img1 = cv2.imread("F:\est01\e1.jpg")
h, w, ch = img1.shape
# 变换矩阵,最少是float32
M = np.float32([[1, 0, 200], [0, 1, 0]])
# 平移操作
# 注意opencv中先宽后高
new_img1 = cv2.warpAffine(img1, M, dsize=(w, h))
cv2.imshow('img1', img1)
cv2.imshow('new_img1', new_img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

旋转

可以用opencv获取变换矩阵

在进行旋转操作时,不方便手动 计算变换矩阵,opencv中提供了获取变换矩阵的api

方法1:

使用cv2.getRotationMatrix2D

python 复制代码
M = cv2.getRotationMatrix2D(center, angle, 缩放比例)
python 复制代码
import cv2
import numpy as np
img1 = cv2.imread("F:\est01\e1.jpg")
h, w, ch = img1.shape
# 获取变换矩阵
M = cv2.getRotationMatrix2D((100, 100), 30, 1)
new_img1 = cv2.warpAffine(img1, M, (w, h))
cv2.imshow('img1', img1)
cv2.imshow('new_img1', new_img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

另一种方法:

使用cv2.getAffineTransform(src, dst)

python 复制代码
M = cv2.getAffineTransform(src, dst)

可以通过三个点来确定变换后的位置,相当于解方程,三个点对应三个方程,解出偏移的参数,旋转的角度

python 复制代码
src = np.float32([[200, 100], [300, 100], [200, 300]])
dst = np.float32([[100, 150], [360, 200], [280, 120]])
M = cv2.getAffineTransform(src, dst)
new_img1 = cv2.warpAffine(img1, M, (w, h))

三个点是随便写的,所以有些许奇怪 哈哈哈

效果像把图片向某个方向拉

透视

将一种坐标系变成另一种坐标系,可以把倾斜的图片变正

函数:

python 复制代码
cv2.warpPerspective(img,M,desize.......)

对于透视变换来说,M是一个3*3的矩阵

cv2.getPerspectiveTransform(src,dst)获取透视变换矩阵,需要4个点,即图片的四个角

python 复制代码
src = np.float32([[50, 50], [630, 0], [0, 640], [630, 630]])
dst = np.float32([[0, 0], [640, 0], [0, 640], [640, 640]])
M = cv2.getPerspectiveTransform(src, dst)
new_img1 = cv2.warpPerspective(img1, M, (640, 640))
相关推荐
带娃的IT创业者15 分钟前
《Python实战进阶》专栏 No.3:Django 项目结构解析与入门DEMO
数据库·python·django
AL.千灯学长31 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
HealthScience44 分钟前
【异常错误】pycharm debug view变量的时候显示不全,中间会以...显示
ide·python·pycharm
LCG元1 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
Stara05111 小时前
AI赋能编程:PyCharm与DeepSeek的智能开发革命
pycharm·ai编程·python3.9·deepseek
lihuayong1 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨1 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡1 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河2 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14552 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt