opencv006图像处理之仿射变换(旋转,缩放,平移)

空间变换中的仿射变换对应着五种变换,平移,缩放,旋转,翻转,错切。而这五种变化由原图像转变到变换图像的过程,可以用仿射变换矩阵进行描述。而这个变换过程可以用一个2*3的矩阵与原图进行相乘得到。关键就是这个矩阵M:

仿射变换的函数:

平移,旋转

python 复制代码
cv2.warpAffine(scr, M, dsize, flags, mode, value)

透视

python 复制代码
 cv2.warpPerspective(img1, M, desize......)
  • M: 变换矩阵
  • desize: 输出图片大小
  • flags:与resize中的插值算法一致
  • mode:边界外推法标志(有默认值)
  • value:填充边界值(有默认值)

平移

读入的是二维的图像,所以就不用写最后一行了


向右平移200 (向左就是负数,其他同理)

变换矩阵,最少是float32

M = np.float32([[1, 0, 200], [0, 1, 0]])

向下平移200

变换矩阵,最少是float32

M = np.float32([[1, 0, 0], [0, 1, 200]])

向右下平移

变换矩阵,最少是float32

M = np.float32([[1, 0, 200], [0, 1, 200]])

这个是向右平移的代码:

python 复制代码
import cv2
import numpy as np
img1 = cv2.imread("F:\est01\e1.jpg")
h, w, ch = img1.shape
# 变换矩阵,最少是float32
M = np.float32([[1, 0, 200], [0, 1, 0]])
# 平移操作
# 注意opencv中先宽后高
new_img1 = cv2.warpAffine(img1, M, dsize=(w, h))
cv2.imshow('img1', img1)
cv2.imshow('new_img1', new_img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

旋转

可以用opencv获取变换矩阵

在进行旋转操作时,不方便手动 计算变换矩阵,opencv中提供了获取变换矩阵的api

方法1:

使用cv2.getRotationMatrix2D

python 复制代码
M = cv2.getRotationMatrix2D(center, angle, 缩放比例)
python 复制代码
import cv2
import numpy as np
img1 = cv2.imread("F:\est01\e1.jpg")
h, w, ch = img1.shape
# 获取变换矩阵
M = cv2.getRotationMatrix2D((100, 100), 30, 1)
new_img1 = cv2.warpAffine(img1, M, (w, h))
cv2.imshow('img1', img1)
cv2.imshow('new_img1', new_img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

另一种方法:

使用cv2.getAffineTransform(src, dst)

python 复制代码
M = cv2.getAffineTransform(src, dst)

可以通过三个点来确定变换后的位置,相当于解方程,三个点对应三个方程,解出偏移的参数,旋转的角度

python 复制代码
src = np.float32([[200, 100], [300, 100], [200, 300]])
dst = np.float32([[100, 150], [360, 200], [280, 120]])
M = cv2.getAffineTransform(src, dst)
new_img1 = cv2.warpAffine(img1, M, (w, h))

三个点是随便写的,所以有些许奇怪 哈哈哈

效果像把图片向某个方向拉

透视

将一种坐标系变成另一种坐标系,可以把倾斜的图片变正

函数:

python 复制代码
cv2.warpPerspective(img,M,desize.......)

对于透视变换来说,M是一个3*3的矩阵

cv2.getPerspectiveTransform(src,dst)获取透视变换矩阵,需要4个点,即图片的四个角

python 复制代码
src = np.float32([[50, 50], [630, 0], [0, 640], [630, 630]])
dst = np.float32([[0, 0], [640, 0], [0, 640], [640, 640]])
M = cv2.getPerspectiveTransform(src, dst)
new_img1 = cv2.warpPerspective(img1, M, (640, 640))
相关推荐
TM1Club4 分钟前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
陈天伟教授7 分钟前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang133830890757 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
sjjhd65212 分钟前
Python日志记录(Logging)最佳实践
jvm·数据库·python
板面华仔30 分钟前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
2301_8213696140 分钟前
用Python生成艺术:分形与算法绘图
jvm·数据库·python
GAOJ_K43 分钟前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui1 小时前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海1 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
机 _ 长1 小时前
YOLO26 改进 | 基于特征蒸馏 | 知识蒸馏 (Response & Feature-based Distillation)
python·深度学习·机器学习