【Pytorch】学习记录分享14——视频分析3D卷积

【Pytorch】学习记录分享14------视频分析3D卷积

      • [1. 视频分析 3D卷积](#1. 视频分析 3D卷积)
      • [2. UCF101数据](#2. UCF101数据)
      • [3. U3D算法](#3. U3D算法)

1. 视频分析 3D卷积

3D卷积的简介

在图像处理领域,被卷积的都是静态图像,所以使用2D卷积网络就足以。而在视频理解领域,为了同时保留时序信息,就需要同时学习时空特征,如果用2DCNN来处理视频,那么将不能考虑编码在连续多帧之间的运动信息,而C3D网络就在这样的背景下横空出世了。

3D convolution 最早应该是在"3D convolutional neural networks for human action"中被提出并用于行为识别的。该论文提出的模型尝试从空间和时间维度中提取特征,从而捕获在多个相邻帧中编码的运动信息。

主要贡献如下:

1、我们提出应用3D卷积运算从视频数据中提取空间和时间特征以进行动作识别。这些3D特征提取器在空间和时间维度上操作,从而捕获视频流中的运动信息。

2、我们开发了基于3D卷积特征提取器的3D卷积神经网络架构。该CNN架构从相邻视频帧生成多个信息信道,并在每个信道中分别执行卷积和子采样。最终的特征表示是通过组合所有频道的信息获得的。

3、我们提出通过增加具有作为高级运动特征计算的辅助输出的模型来规范3D CNN模型。我们进一步提出通过组合各种不同架构的输出来提高3D CNN模型的性能。

具体操作:通过同时堆叠多个连续帧形成的立方体与一个3D核进行卷积。通过这个构建,卷积层上的特征图连接到了前一层的多个连续帧,从而捕捉动作信息。

2. UCF101数据

数据集由101个人类动作类别的13,320个视频组成。我们使用此数据集提供的三个拆分设置。

3. U3D算法

3D卷积核时间深度搜索。不同卷积核时间深度设置在UCF101测试集split-1上的精度。2D ConvNet效果最差,3×3×3卷积核的3D ConvNet在实验中表现最佳。

结构如下图:

C3D架构。C3D网络有8个卷积层,5个最大池化层和2个全连接层,最后是softmax输出层。所有的3D卷积核都是3×3×3,在空间和时间上都有步长1。滤波器的数量表示在每个框中。3D池化层由pool1到pool5表示。所有池化核为2×2×2,除了pool1为1×2×2。每个全连接层有4096个输出单元。

网络架构:上图的发现表明,3×3×3卷积核的均匀设置是3D ConvNets的最佳选择。这个发现与2D ConvNets一致。使用大型数据集,可以根据机器内存限制和计算承受能力,尽可能深入地训练具有3×3×3核的3D ConvNet。使用目前的GPU内存,我们设计了3D ConvNet,具有8个卷积层、5个池化层、两个全连接层,以及一个softmax输出层。网络架构如图3所示。为了简单起见,我们从现在开始将这个网络称为C3D。所有3D卷积滤波器均为3×3×3,步长为1×1×1。为了保持早期的时间信息设置pool1核大小为1×2×2、步长1×2×2,其余所有3D池化层均为2×2×2,步长为2×2×2。每个全连接层有4096个输出单元。

相关推荐
自动化代码美学44 分钟前
【Python3.13】官网学习之控制流
开发语言·windows·python·学习
于是我说2 小时前
稳定常用能直接在电脑上下载微博视频的方法
音视频
AA陈超2 小时前
ASC学习笔记0020:用于定义角色或Actor的默认属性值
c++·笔记·学习·ue5·虚幻引擎
ACP广源盛139246256732 小时前
GSV2006@ACP#2 进 4 出 HDMI2.0 中继器(带音频提取 / 嵌入功能)全解析
单片机·嵌入式硬件·音视频
檐下翻书1733 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao4 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
思成不止于此4 小时前
深入理解 C++ 多态:从概念到实现的完整解析
开发语言·c++·笔记·学习·多态·c++40周年
Highcharts.js4 小时前
学习 Highcharts 可视化开发的有效途径
学习·数据可视化·highcharts·图表开发·可视化开发
胡童嘉4 小时前
长沙烈焰鸟网络科技有限公司实习day12+软件测试学习day3日记
学习
mortimer5 小时前
【实战复盘】 PySide6 + PyTorch 偶发性“假死”?由多线程转多进程
pytorch·python·pyqt