【Python机器学习】线性模型——用于回归的线性模型

对于回归问题,线性模型预测的一般公式为:

y=w[0]*x[0]+w[1]*x[1]+............+w[p]*x[p]+b

这里的x[0]到x[p]表示的事单个数据点的特征,w和b是学习模型的参数,y是模型的预测结果。对于单一特征的数据集,公式:

y=w[0]*x[0]+b

这里的w[0]是斜率,b是y轴偏移。对于有更多特征的数据集,w包含沿每个特征坐标轴的斜率。

python 复制代码
import mglearn.datasets
import matplotlib.pyplot as plt

mglearn.plots.plot_linear_regression_wave()
plt.show()

从w[0]可以看出,斜率应该在0.4左右。截距是指预测直线与y轴的交点,比0略小。

相关推荐
修复bug29 分钟前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc
掘金安东尼32 分钟前
为什么GPT-4o可以生成吉卜力风格照片,原理是什么?
人工智能
机器鱼1 小时前
1.2 基于卷积神经网络与SE注意力的轴承故障诊断
深度学习·机器学习·cnn
励志成为大佬的小杨1 小时前
pytorch模型的进阶训练和性能优化
人工智能·pytorch·python
知舟不叙1 小时前
OpenCV的基础操作
人工智能·opencv·计算机视觉
果冻人工智能1 小时前
打造 AI Agent 对于中产阶级来说就是场噩梦
人工智能
MediaTea1 小时前
AI 文生图:提示词撰写技巧与示例(ChatGPT-4o 篇)
人工智能
墨绿色的摆渡人2 小时前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
zm-v-159304339862 小时前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt