【Python机器学习】线性模型——用于回归的线性模型

对于回归问题,线性模型预测的一般公式为:

y=w[0]*x[0]+w[1]*x[1]+............+w[p]*x[p]+b

这里的x[0]到x[p]表示的事单个数据点的特征,w和b是学习模型的参数,y是模型的预测结果。对于单一特征的数据集,公式:

y=w[0]*x[0]+b

这里的w[0]是斜率,b是y轴偏移。对于有更多特征的数据集,w包含沿每个特征坐标轴的斜率。

python 复制代码
import mglearn.datasets
import matplotlib.pyplot as plt

mglearn.plots.plot_linear_regression_wave()
plt.show()

从w[0]可以看出,斜率应该在0.4左右。截距是指预测直线与y轴的交点,比0略小。

相关推荐
泰迪智能科技0117 分钟前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手1 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20211 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight1 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说1 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu1 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
PowerBI学谦2 小时前
使用copilot轻松将电子邮件转为高效会议
人工智能·copilot
audyxiao0012 小时前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
Jeremy_lf2 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型