【Python机器学习】线性模型——用于回归的线性模型

对于回归问题,线性模型预测的一般公式为:

y=w[0]*x[0]+w[1]*x[1]+............+w[p]*x[p]+b

这里的x[0]到x[p]表示的事单个数据点的特征,w和b是学习模型的参数,y是模型的预测结果。对于单一特征的数据集,公式:

y=w[0]*x[0]+b

这里的w[0]是斜率,b是y轴偏移。对于有更多特征的数据集,w包含沿每个特征坐标轴的斜率。

python 复制代码
import mglearn.datasets
import matplotlib.pyplot as plt

mglearn.plots.plot_linear_regression_wave()
plt.show()

从w[0]可以看出,斜率应该在0.4左右。截距是指预测直线与y轴的交点,比0略小。

相关推荐
aneasystone本尊1 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒1 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊12 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三12 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯13 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet15 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算15 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心15 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar16 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai16 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc